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Abstract

This paper characterizes the class of inequality measures that are multiplica-

tively decomposable, meaning they can be expressed as a product of within-group

and between-group inequality components, with weights summing to one. Remark-

ably, this corresponds to the class of inequality measures that is additively decom-

posable in subgroups, so that that total inequality can be written as the weighted

sum of inequalities within groups. The proposed measures satisfy standard ax-

ioms in inequality measurement, including scale and population independence, the

Pigou-Dalton transfer principle, and—for reasonable parameter values—the trans-

fer sensitivity principle. We illustrate the properties of the new class using data on

global income inequality and inequality within the United States.
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1 Introduction

A fundamental question in the analysis of income inequality is the extent to which overall

inequality can be attributed to di!erences between major population subgroups, such

as those defined by location, age, sex, race, or education (Bourguignon 1979; Milanovic

2011). Decomposability is a useful property, facilitating subgroup analysis and policy

evaluation. However, not all decomposable measures are necessarily desirable indicators

of inequality. A robust inequality index should also satisfy fundamental axioms and

ethical principles, and have an interpretation that resonates with academics and policy-

makers.

The theoretical and empirical literature on decomposable inequality measures has pre-

dominantly focused on additive decomposability in between- and within-group contribu-

tions, which, under mild assumptions, uniquely characterizes the Generalized Entropy

class of inequality measures (Shorrocks 1980).1 Given a vector of incomes y and a par-

tition of the population into G subgroups, the standard additive decomposition of an

inequality index I takes the form

I(y) = I(ȳ)
︸ ︷︷ ︸

Between-group

+
G∑

g=1
wgI(yg)

︸ ︷︷ ︸
Within-group

, (1)

where ȳ is the so called smoothed distribution, obtained by replacing each income in y by

the average of its group, yg is the vector of incomes within subgroup g, G is the number

of subgroups, and wg is a weight attached to inequality in subgroup g.

Beyond the analytical simplicity of the additive form, a key justification for this focus

is the argument that any more general form of decomposability inevitably leads to in-

equality measures that are mere monotonic transformations of the Generalized Entropy

family (Shorrocks 1984). This perceived redundancy has reinforced the focus on additive

decomposability in the study of inequality measurement.

Additive decomposability as in equation (1), however, comes with important limita-

1
Related results were developed by Bourguignon (1979) and Anand (1983).
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tions (Shorrocks 1980). First, for most members of the Generalized Entropy class, the

decomposition weights (w1, ..., wG) do not sum to one. As a result, the within-group com-

ponent can diverge from the average inequality across groups—even when all subgroups

exhibit identical inequality. Second, the sum of decomposition coe”cients typically de-

pends on the level of between-group inequality. This implies that even with uniform

within-group inequality, changes in between-group inequality can a!ect the total within-

group contribution. Notably, two members of the Generalized Entropy class—the Theil T

and L indices—do not su!er from these issues, as their decomposition weights do sum to

one.2 However, Theil indices and other Generalized Entropy measures often remain con-

fined to decomposition analysis, as they lack the intuitive appeal needed for broader use

in policy and public debates (Haddad et al. 2024). Sen (1997, p. 36) famously remarked

that the Theil index “is an arbitrary formula, and the average of the logarithms of the

reciprocals of income shares weighted by income is not a measure that is exactly overflow-

ing with intuitive sense.” In contrast, measures like the Gini coe”cient or quantile ratios

(e.g., Palma) are more easily grasped and widely used in policy and public discourse,

even though they lack desirable properties in terms of decomposition and distribution

sensitivity. As a result, applied research often resorts to a dual approach: intuitive mea-

sures like the Gini or quantile ratios are used to describe inequality levels and trends,

while the Theil L is brought in specifically for decomposition analysis (e.g., Milanovic

2011; Bourguignon 2015; Ravallion 2018; Milanovic 2024). These limitations raise a nat-

ural question: could an alternative form of decomposability yield a class of inequality

measures that is both decomposable and intuitively interpretable?

Our paper explores two alternative forms of inequality decomposition. First, we exam-

ine the multiplicative decomposability of total inequality into within-group and between-

group components.3 Using the same notation as before, a measure I is multiplicatively

2
The Theil T and L indices correspond to GE(1) and GE(0), respectively. In the case of the Theil

T index, group weights are proportional to each group’s total income, reflecting income-weighted de-

composability (Bourguignon 1979). This feature gives greater weight to richer groups, which may seem

misaligned with the normative view that inequality is more concerning when it a!ects poorer popula-

tions. By contrast, the Theil L index assigns weights proportional to group population sizes, capturing

population-weighted decomposability (Bourguignon 1979).
3
Contrary to this paper, Lasso de la Vega and Urrutia (2008) study the multiplicative decomposability

of “equality measures” and characterize a family of generalized Atkinson inequality measures whose
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decomposable if

I(y) = I(ȳ)
︸ ︷︷ ︸

Between-group

·
G∑

g=1
ωgI(yg)

︸ ︷︷ ︸
Within-group

, (2)

for some weights ω1, ..., ωG.4 Several arguments justify our focus on multiplicative decom-

posability. First, like the additive decomposition, it is analytically tractable and admits

a simple graphical interpretation (see Figure 1). Unlike the additive form, however,

it explicitly captures the complementarity between within- and between-group compo-

nents.5 Second, multiplicative decompositions can be conveniently reformulated as an

addition using a logarithmic transformation. With multiplicative decomposability, per-

centage changes in total inequality can be expressed as the sum of percentage changes

in its within- and between-group components. Multiplicative decomposition is therefore

particularly relevant for dynamic analyses of inequality changes.

Figure 1: Additive and multiplicative inequality decompositions in within- and between-
group components

Second, we also examine the additive decomposition in subgroups, where each group

is assigned a direct contribution to total inequality, without distinguishing a separate

corresponding equality measure is multiplicatively decomposable.
4
An alternative formulation in which each group’s within-group contribution and weight enter mul-

tiplicatively would be undesirable, as it would imply that the e!ect on within-group inequality of rising

inequality in one group depends on the level of inequality in other groups.
5
With the Generalized Entropy class, the complementarity is implicitly present—but hidden—as

within-group weights generally depend on between-group inequality.
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between-group component. An inequality measure I is additively decomposable in sub-

groups if

I(y) =
G∑

g=1
εgI(yg) , (3)

for some weights ε1, ..., εG. This form of additive decomposition makes it possible to

identify which groups contribute most to overall inequality. It is particularly useful

when researchers or policymakers seek to assign a specific inequality contribution to each

subgroup—for example, to determine which country contributes most to global inequality.

We derive two central results in this paper. First, we establish that multiplicative

decomposition as defined in equation (2) is equivalent to additive decomposition in sub-

groups as defined in equation (3). Second, we characterize the class of inequality measures

that satisfy these two properties under relatively weak axiomatic assumptions. The new

class takes the form of a single-parameter family given by

Iω(y) = 1
n

n∑

i=1

(
yi

µ

)1→ω

,

where µ is the average income and ϑ → (↑↓, 0) ↔ (1, ↓) measures inequality aversion.

Imposing transfer sensitivity (Shorrocks and Foster 1987) further restricts the range of

the inequality aversion parameter to ϑ → (↑1, 0) ↔ (1, ↓).

In the multiplicative decomposition of equation (2), the weights assigned to each group

in the within-group component sum to one, ensuring a straightforward interpretation

of each group’s relative contribution. When ϑ > 1, these weights increase with group

population size and decrease with group average income—appropriately assigning greater

weight to large and poor economies. In the additive decomposition in subgroups of

equation (3), the weights reflect each group’s contribution to between-group inequality.

In particular, the sum of the weights is itself a measure of inequality between groups. If

ϑ > 1, a group’s contribution to total inequality is increasing with population size and

inequality within the group, and decreasing with the group’s average income.

By construction, the new class satisfies key properties in the measurement of inequality,
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including Scale Invariance, Population Independence, Anonymity, and the Transfer Prin-

ciple. For reasonable values of parameters, it also satisfies Transfer Sensitivity (Shorrocks

and Foster 1987). The new class of inequality measure is directly related to Generalized

Entropy and Atkinson (1970) classes of inequality measures (see Section 3 for a discus-

sion). However, a key distinction between the new class and most existing inequality

measures lies in its normalization. Since 1 is the identity element of multiplications,

perfect equality corresponds to a value of one in our framework.6

The measure with an inequality aversion parameter of ϑ = 2 corresponds to the index

identified in Kraay et al. (2024). This measure plays a central role within the new

class. First, an inequality aversion coe”cient of 2 aligns with recent empirical estimates

(see e.g.,Del Campo et al. 2024; Sterck 2024; Kot and Paradowski 2022). Second, this

specific index o!ers intuitive interpretations. It corresponds to the expected ratio of

incomes between two randomly selected individuals in the population (Sterck 2024). The

measure can also be interpreted as the average factor by which individual incomes must

be multiplied to reach the mean. Third, the inequality measure I2(y) is directly linked

to the prosperity gap (Kraay et al. 2024; Sterck 2024), an inclusive indicator adopted by

the World Bank to track progress toward its Shared Prosperity goal.

The remainder of the paper is structured as follows. Section 2 adopts an axiomatic

approach to characterize the class of inequality measures satisfying the decomposition

properties in equations (2) and (3). Section 3 examines the key properties of this class,

with particular emphasis on the measure corresponding to an inequality aversion param-

eter of 2. Section 4 illustrates the measure and its decomposition properties, considering

both global inequality and inequality in the US. Section 5 concludes.

6
The identity element of the addition is 0. This is the minimum value of inequality measures like

the Gini or the members of the Generalized Entropy class. For our class of measures, 1 is the minimum

value possible.
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2 Theoretical Framework

2.1 Preliminaries

Let y = (y1, ..., yn) → Rn
++ be an income distribution that can be partitioned in G ↗ 2

groups, so that y =
(
y1, y2, ..., yG

)
, with yg =

(
yg

1 , ..., yg
ng

)
→ Rng

++ for all 1 ↘ g ↘ G.7 Let

µ → R++ denote the average income, and µ = (µ1, ..., µG) → RG
++ and n = (n1, ..., nG) →

NG
++ the vectors of, respectively, groups’ mean and population size. We assume that

ng ↗ 2 for all 1 ↘ g ↘ G. We denote by ȳ → Rn
++ the smoothed distribution which is

obtained by replacing each income yi by the average income of the group it belongs to.

Let I : Rn
++ ≃ R+ be an inequality measure. For any y → Rn

++, standard desirable

properties for I are (see, for example, Villar 2017, ch. 2):

Axiom 1. Continuity: I(y) is continuous with continuous first-order partial derivatives.

Axiom 2. Symmetry: I (y) = I (!y) for any permutation matrix !.

Axiom 3. Transfer principle: I (y) > I (By) for any bistochastic matrix B that is neither

the identity nor a permutation matrix.

Axiom 4. Scale Invariance: I (ϖy) = I (y) for all ϖ ↗ 1.

Axiom 5. Replication Invariance: I



y, ..., y
︸ ︷︷ ︸

↑m



 = I (y) for all m → N++.

Throughout the paper, a measure I is an inequality measure only if it satisfies the

above properties. This convention allows us to avoid mentioning the above axioms in

each of the following results.

We enlarge the set of desirable properties for I by including the two decomposability

requirements discussed in the previous section:

Axiom 6. Multiplicative decomposability: For all y → Rn
++, there exists a list of coe”-

cients ωg (µ, n), for g = {1, ..., G}, such that

I (y) = I(ȳ)



G∑

g=1
ωg (µ, n) I (yg)



 . (4)

7
Throughout the text R denotes the set of real numbers, R++ the set of strictly positive real numbers,

and R+ = R++ ↔ {0}.
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Axiom 7. Additive decomposability in subgroups: For all y → Rn
++, there exists a list of

coe”cients εg (µ, n), for g = {1, ..., G}, such that

I (y) =
G∑

g=1
εg (µ, n) I (yg) . (5)

Our first result is to show that these two axioms are actually equivalent. To see this,

observe that (µ, n) is su”cient information for constructing ȳ. Therefore, by defining

εg (µ, n) = I(ȳ) ωg (µ, n), any multiplicative decomposition can be written as additive

decomposition in subgroups, and vice versa. Formally:

Theorem 1. An inequality measure I satisfies Multiplicative decomposability if and only

if it satisfies Additive decomposability in subgroups.

Proof. Suppose that I satisfies Multiplicative decomposability. Then, for any y → Rn
++,

there exist numbers ωg (µ, n), 1 ↘ g ↘ G, such that

I (y) = I(ȳ)



G∑

g=1
ωg (µ, n) I (yg)



 .

Define x = (µ11n1 , ..., µG1nG), where 1k is the k-dimensional unit vector. By Symmetry,

I(x) = I(ȳ). Hence, I(ȳ) is function of (µ, n).

Let εg (µ, n) ⇐ I(ȳ) ωg (µ, n) for all 1 ↘ g ↘ G. Substituting in the previous equation

we obtain

I (y) =
G∑

g=1
εg (µ, n) I (yg)

which is the additive decomposition in subgroups.

For the other direction of the implication, it is su”cient to notice that if I exists, then

we can compute I(ȳ) and apply the reverse reasoning.

The last minimal requirement for I is a normalization. In other words, there should

exist K → R+ such that I (y) ↗ K with I (y) = K if and only if yi = µ for all 1 ↘ i ↘ n.

The reader may notice that it is common to set K = 0. The following lemma shows that

0 cannot be the value corresponding to perfect equality.

8



Lemma 1. If the inequality measure I satisfies Multiplicative decomposability, then we

cannot impose I (y) = 0 if and only if yi = µ for all 1 ↘ i ↘ n.

Proof. Consider a distribution y such that µg = µ for all 1 ↘ g ↘ G. By multiplicative

separability, I (y) =
(G

g=1 εg (µ, n) I (yg)
)

I (ȳ) . Now, since I (ȳ) = 0, then I (y) = 0 for

all I (y1) , ..., I
(
yG

)
. This contradicts the Transfer Principle.

Since one is the neutral element of a multiplication, and given our focus on multiplica-

tive decomposability, we find it desirable to impose the following normalization.8

Axiom 8. Normalization: I (y) ↗ 1 with I (y) = 1 if and only if yi = µ for all 1 ↘ i ↘ n.

The following lemma clarifies the implication of our normalization on the weights at-

tached to each within-group inequality measure. Normalization in which perfect equality

corresponds to 1 leads decomposition weights summing to 1 (while a normalization to a

constant K > 0 would lead to decomposition weights summing to 1/K).

Lemma 2. Let I be an inequality measure that satisfies Normalization. If I satisfies

Multiplicative decomposability, then equation (4) must hold with
G

g=1 ωg (µ, n) = 1.

Proof. By way of contradiction, assume that
G

g=1 ωg (µ, n) = K ⇒= 1. Consider a distri-

bution y divided in groups of heterogeneous size and average, but such that each income

within a group corresponds to its average. In other words, y =
(
ȳ1, ..., ȳG

)
= ȳ for some

(µ, n). If I satisfies Multiplicative decomposability then it must be

I (y) = I
(
ȳ1, ..., ȳG

)
=




G∑

g=1
ωg (µ, n) I (ȳg)



 I (y) .

By Normalization, I (ȳg) = 1 for all g. Therefore,

I (y) =



G∑

g=1
ωg (µ, n)



 I (y) = K I(y).

A contradiction.
8
Lasso de la Vega and Urrutia (2008) imposed a normalization in which the perfect equality cor-

responds to zero, and thus were unable to identify a class of multiplicatively decomposable inequality

measures. Instead, they derived a class of multiplicatively decomposable equality measures.
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Hence, in a multiplicative decomposition, the weights assigned to each within-group

inequality measure must sum up to 1. This has an interesting implication for the weights

in the group decomposition. Consider a distribution y with no inequality within groups,

so that I(y) = I(ȳ) and I(yg) = 1 for all groups. Substituting in equation (5), we get

I(ȳ) =
G∑

g=1
εg (µ, n) . (6)

In other words, the sum of the weights in the additive decomposition in subgroups must

correspond to a measure of between-group inequality. A consequence of Normalization is

that, di!erently from the weights in the multiplicative decomposition,
G

g=1 εg (µ, n) ↗ 1.

2.2 Characterization

The following theorem characterizes the family of inequality measures that are additively

decomposable in subgroups. Given Theorem 1, it also characterizes the family of in-

equality measures that are multiplicatively decomposable in within- and between-group

components.

Theorem 2. The function I is an inequality measure satisfying Normalization and Ad-

ditive decomposability in subgroups if and only if there exists ϑ → (↑↓, 0) ↔ (1, ↓) such

that, for all y → Rn
++,

I(y) = 1
n

n∑

i=1

(
yi

µ

)1→ω

. (7)

Proof. Let I be an inequality measure satisfying Normalization and Additive decompos-

ability in subgroups.

We begin the proof by introducing some preliminary results. For the most part, they

are adaptations of theorems proved in Shorrocks (1980) to our di!erent Normalization

axiom. We list them as lemmas and provide the proofs in Appendix A for the sake of

completeness. The first lemma of the proof defines a functional form for the the weights

in equation (5).

Lemma 3. If I satisfies Continuity, Symmetry, Normalization and Additive decompos-

10



ability in subgroups, then there exists a set of functions ϱ (µ, n) such that

εg (µ, n) = ϱ (µg, ng)
ϱ (µ, n) . (8)

Lemma 3 replicates Theorem 1 in Shorrocks (1980). The next lemma shows that

Additive decomposability in subgroups leads to an additive form. The reader may observe

the similarity between the second term on the right hand side of equation (9) and equation

(15) in Shorrocks (1980).

Lemma 4. I satisfies Continuity, Symmetry, Normalization, Transfer Principle and Ad-

ditive decomposability in subgroups if and only if

I (y) = 1 + 1
ϱ (µ, n)

n∑

i=1
[ς (yi) ↑ ς (µ)] (9)

where ϱ (µ, n) is positive ϱµ (µ, n) and ς↓ (µ) are continuous and ς is strictly convex.

The next lemma is also shown in Shorrocks (1980), and in Appendix A.

Lemma 5. Indices of the form given in (9) satisfy Replication invariance if and only if

ϱ (µ, n) = nφ (µ) where φ(·) is positive and di!erentiable.

We are now endowed with the necessary results to prove the main theorem. It follows

from Lemma 5 that

εg (µ, n) = ϱ (µg, ng)
ϱ (µ, n) = ngφ (µg)

nφ (µ)

for some positive and continuously di!erentiable φ (·) . Combining this with (9) gives us

I (y) = 1 + 1
nφ (µ)

n∑

i=1
[ς (yi) ↑ ς (µ)]

where ϱ (µ, n) is positive ϱµ (µ, n) and ς↓ (µ) are continuous and ς is strictly convex.

We can thus set φ = ς and normalize ς(1) = 1 to get

I (y) = 1 + 1
nς (µ)

n∑

i=1
[ς (yi) ↑ ς (µ)] .

11



By Scale Invariance

I (y) = I

(
1
µ

y

)

= 1 + 1
nς (1)

n∑

i=1



ς

(
yi

µ

)

↑ ς (1)


I (y) = 1 + 1
n

n∑

i=1



ς

(
yi

µ

)

↑ 1


I (y) = 1
n

n∑

i=1
ς

(
yi

µ

)

(10)

for some strictly convex function ς such that ς (1) = 1.

Now let us recall Additive decomposability in subgroups, which implies

I (y) =
G∑

g=1

ngς (µg)
nς (µ) I (yg) .

Thus, it must be that

1
n

n
i=1 ς

(
yi

µ

)
= 1

n

G
g=1

ngε(µg)
ε(µ) I (yg)

= 1
n

G
g=1

ngε(µg)
ε(µ)

1
ng

ng

j=1 ς


yg
j

µg



= 1
n

G
g=1

ε(µg)
ε(µ)

ng

j=1 ς


yg
j

µg


(11)

We need to find the function ς that satisfies the above equality. The function ς (x) = xϑ

works. Indeed

1
n

G∑

g=1

(
µg

µ

)ϑ ng∑

j=1

(
yg

j

µg

)ϑ

= 1
n

G∑

g=1

(
1
µ

)ϑ ng∑

j=1

(
yg

j

1

)ϑ

= 1
n

G∑

g=1

ng∑

j=1

(
yg

j

µ

)ϑ

= 1
n

n∑

i=1

(
yi

µ

)ϑ

.

We argue that this solution is unique. To see this, notice that (11) is equivalent to

G∑

g=1

ng∑

j=1
ς

(
yg

j

µ

)

=
G∑

g=1

ς (µg)
ς (µ)

ng∑

j=1
ς

(
yg

j

µg

)

.

Since µ and µg are averages, we can vary them freely. Look at a single term on each side

12



for group g. When the identity must hold for all possible values, it forces, in e!ect,

ς

(
x

µ

)

= ς (µg)
ς (µ) ς

(
x

µg

)

(12)

for all µ, µg > 0 and x → R+, subject to x/µ = (x/µg) · (µg/µ). Take the case of µ = 1

and recall that ς (1) = 1. Equation 12 becomes

ς (x) = ς (µg)
ς (1) ς

(
x

µg

)

⇑⇓ ς (x) = ς (µg) ς

(
x

µg

)

.

Once again, this must holt for all x and µg. Setting µg = a and x = az for some a, z we

get

ς (az) = ς (a) ς (z) .

Aczél (1966, p. 39 equation 7) shows that the most general solution for the above equation

is of the form ς (z) = zϑ. Replacing, and setting φ = (1 ↑ ϑ) into (10) gives the desired

functional form.

We only need to establish the admissible values for ϑ in equation (7). By the Transfer

Principle, (yi/µ)ϑ ought to be strictly convex for all yi. Taking the second derivative of

the function f(t) = tϑ we have f ↓↓(t) = φ(φ ↑ 1)tϑ→2, which is strictly positive if and only

if φ(φ ↑ 1) > 0. This leads to the desired condition ϑ < 0 or ϑ > 1.

This concludes the proof of the necessity. Su”ciency is easy to show and left to the

reader.

In combination with Theorem 1, Theorem 2 identifies a single family of inequality

measures that satisfies both of our decomposability axioms. Before turning to a more

detailed analysis of the properties of the proposed measures, it is useful to underline

that the same family can be restricted to satisfy also the transfer sensitivity principle

(Shorrocks and Foster 1987).

Axiom 9. Transfer Sensitivity: A progressive transfer among low incomes reduces I more

than an equal transfer taking place among higher incomes.

Lemma 6. Inequality measures in equation (7) satisfy Transfer Sensitivity if and only if

13



ϑ → (↑1, 0) ↔ (1, ↓).

Proof. Shorrocks and Foster (1987) show that, when I is di!erentiable, Transfer Sen-

sitivity corresponds to negative third derivative. Consider each single element of the

sum in equation (7). Define, f(x) = x1→ω, for x > 0, then f ↓↓↓(x) < 0 if and only if

↑ϑ(1 ↑ ϑ)(↑ϑ ↑ 1) < 0. This inequality is satisfied only for ϑ → (↑1, 0) ↔ (1, ↓).

3 Properties

The previous section demonstrated that the new class of inequality measures defined in

equation (7) satisfies a set of axioms widely regarded as fundamental in the measurement

of inequality. These include Continuity, Symmetry, Transfer, Replication Invariance, and

Scale Invariance. This class is uniquely characterized by its compliance with these axioms,

along with the decomposability properties in equations (4) and (5).

The multiplicative decomposition of equation (7) is:9

Iω(y) = Iω (ȳ)
G∑

g=1
ωg Iω (yg) , where ωg =

ngµ1→ω
gG

g=1 ngµ1→ω
g

. (13)

It is straightforward that the weights ωg sum to one for any value of the inequality aversion

parameter. When ϑ > 1, a group’s weight increases with its population size and decreases

with its mean income, reflecting a normative emphasis on larger and poorer groups.

Greater inequality aversion further amplifies the weight assigned to poorer groups.

The additive decomposition in subgroups of equation (7) is:

Iω(y) =
G∑

g=1
εg Iω (yg) , with εg = ng

n

µ1→ω
g

µ1→ω
. (14)

In this case, the weights εg reflect each group’s contribution to between-group inequality—

they also increase with a group’s population size and decrease with its mean income when

ϑ > 1. Particularly, setting all Iω(yg) to 1, the previous equation becomes a measure of

9
We denote Ix the version of equation (7) in which ω = x.
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inequality between groups, in line with equation (6).

There is a direct link between our results and the work of Shorrocks (1984), which

characterizes the class of decomposable inequality measures satisfying a general decom-

position property, defined by an aggregator function A such that

I
(
y1, ..., yG

)
= A

(
I

(
y1

)
, ..., I

(
yG

)
, µ, n

)
. (15)

Assuming normalization at 0, Shorrocks (1984)’s Theorem 5 shows that any decomposable

inequality measure satisfying equation (15) must be a continuous and strictly increasing

transformation F (I) of the Generalized Entropy (GE) class with F (0) = 0. Lemma

1 implies normalization at 0 is incompatible with multiplicative decomposability while

Lemma 2 shows normalization at 1 is the natural choice for multiplicative decomposition.

Since we use normalization at 1 in our paper, Shorrocks (1984)’s result is not directly

applicable. Yet, there is a direct link between our new class and the GE class (and

hence also with Atkinson (1970)’s class, whose link with the GE class is well known).

Specifically, we have Iω(y) = ↑ϑ (1 ↑ ϑ) GE1→ω(y) + 1 = [1 ↑ Aω(y)]1→ω.10

There is also a direct relationship between the new class of inequality measures and the

class of inclusive poverty measures introduced by Sterck (2024).11 It is straightforward

that

Iω(y) = Pω(y; z) ⇔ z1→ω

µ1→ω
= Pω(y; z)

Pω(µ1n; z) , (16)

where Pω(y; z) = 1
n

n
i=1

(
yi

z

)1→ω
is obtained by replacing µ by a constant z in equation

(7). Pω(y; z) is the class of poverty measures corresponding to the new class of inequality

measures (Sen 1976, p.225). For ϑ > 1, Pω(y; z) is an inclusive and distribution sensitive

10
The GE class is typically defined as GEc(y) = 1

n
1

c(c→1)
n

i=1


yi

µ

c

↑1

for c ⇒= 0, 1. The Atkinson

(1970) class is typically defined as Aω(y) = 1 ↑ 1
µ


1
n

n
i=1 y1→ω

i

1/(1→ω)
for 0 ↘ ω ⇒= 1.

11
Following Sterck (2024), poverty measures decrease with incomes while prosperity measures increase

with income. Poverty (resp. Prosperity) measures are focused if they only consider incomes below (resp.

above) a poverty (resp. prosperity) line, and inclusive if they consider the entire distribution of incomes.

We follow this terminology in this paper.
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poverty measure, satisfying both transfer and transfer sensitivity axioms (Kakwani 1980;

Foster and Shorrocks 1988).

The measure with an inequality aversion parameter of ϑ = 2 plays a central role in the

new class. It corresponds to the inequality index identified in Kraay et al. (2024) and

Sterck (2024):

I2(y) = 1
n

n∑

i=1

(
µ

yi

)

(17)

In line with Sterck (2024), we use the label Average Inequality Ratio or Average Inequality

in short, to reflect the fact that it is a simple average of individual inequality functions,

which take the form of a ratio between average income and individual income.12

This measure has several advantages. First, ϑ = 2 is relatively consistent with recent

empirical estimates of inequality aversion. Drawing on an online survey experiment con-

ducted with both experts and members of the general public in the US, South Africa,

India, and Kenya, Sterck (2024) reports an average inequality aversion parameter of 2.11

among experts (95% CI: 1.93–2.30, median = 2) and 2.41 in the general public (95%

CI: 2.35–2.47, median = 2.75). These findings align closely with values derived from

macroeconomic calibration methods (Kot and Paradowski 2022). Estimates derived from

taxation data tend to fall between 1 and 2 (Del Campo et al. 2024). The axiomatic

literature, which derives the level of inequality aversion required to satisfy core equity

principles, typically points to values above 1 or 2 (Fleurbaey and Michel 2001; Del Campo

et al. 2024). In the context of pro-poor growth, Foster and Székely (2008) similarly argue

that ϑ should be at least 2 to ensure su”cient sensitivity to the lower end of the income

distribution.

Second, this specific inequality measure o!ers intuitive interpretations. It corresponds

to the expected ratio of incomes between two randomly selected individuals in the pop-

ulation. For example, in the United States, the measure equals 4.9, meaning that the

expected income ratio of two people chosen at random is 4.9. By contrast, the corre-

sponding ratio is only 1.5 in China and 1.4 in India, indicating lower income inequality

12
Kraay et al. (2024) use the term mean ratio deviation.
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(Table 1). Alternatively, the measure can be understood as the average factor by which

individual incomes must be multiplied to reach the mean. In the US, incomes would need

to be multiplied by 4.9 on average to reach the mean, compared to only 1.5 in China and

1.4 in India.

Finally, the measure P2(y; z) = 1
n

n
i=1

(
z
yi

)
associated with I2(y) also has desirable

properties and lends itself to intuitive interpretation. Sterck (2024) provides a conceptual

justification and an axiomatization of P2(y; z) in the context of poverty measurement,

characterizing it as an inclusive measure of poverty, which can be interpreted as the

average number of days needed to get z. In the context of Shared Prosperity measurement,

Kraay et al. (2024) describe P2(y; z) as the prosperity gap, which is the average factor

by which incomes must be multiplied to reach z. The measure P2(y; z) has excellent

properties, being distribution sensitive and satisfying key axioms in the measurement of

welfare and poverty (except focus). Equation (16) o!ers a simple but powerful framework

linking inequality, average income, and average poverty, in line with Bourguignon (2003,

2004)’s Poverty-Growth-Inequality Triangle.13 Reflecting this relevance, the World Bank

has adopted P2(y; z) as its core metrics for monitoring progress toward its goal to promote

Shared Prosperity.

4 Application

We illustrate the usefulness of our framework through two applications: one examining

global inequality trends and another focusing on inequality within the United States.

Existing inequality measures typically o!er either strong theoretical properties or some

intuitive appeal, but never both. Measures in the Generalized Entropy class, for instance,

are widely used for their decomposability but are often seen as di”cult to interpret.

In contrast, measures such as the Gini coe”cient or quantile ratios (e.g., Palma) are

more easily understood but lack key properties, especially decomposability and transfer

13
To be sure, similar relationships have been formulated for other welfare indicators and poverty

measures (Atkinson 1970; Sen 1976). Yet, the distinct strength of the framework formed by I2(y),
P2(y; z), and µ is that all measures have excellent properties and an intuitive interpretation, forming a

coherent framework that links changes in inequality, prosperity, and poverty.
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sensitivity. In both applications, we focus on the Average Inequality Ratio, the central

measure in our class. Our goal is to demonstrate that this measure o!ers both clean

decompositions and an intuitive interpretation, making it a useful tool for both researchers

and policymakers.

4.1 Global Inequality

We illustrate the decomposition properties of average inequality—I2(y)—using data from

the global interpersonal income distribution available through the World Bank’s Poverty

and Inequality Platform (PIP), as of September 19, 2024. PIP is a comprehensive

database comprising approximately 2,500 household surveys from 168 countries, covering

over 97 percent of the world’s population. It provides global income distributions from

1990 to 2024, with each country-year represented by 1,000 income bins (Mahler et al.

2022).14 Income is expressed in constant 2017 Purchasing Power Parity (PPP) dollars,

per person per day. As Kraay et al. (2024), we bottom-code all values at $0.25 per

day to prevent extremely low reported incomes from disproportionately influencing the

estimates.

(a) Inequality trends (b) 5-year growth rates

Figure 2: Multiplicative decomposition: evolution of between- and within-country in-
equality over time

Data source: PIP data (World Bank). Income is measured at 2017 $PPP per person per day and the distribution is

bottom coded at $0.25 (see Kraay et al. 2024 for a discussion).

14
Due to variation in data sources, PIP includes surveys that use consumption as the primary mea-

sure of household welfare (covering roughly three-quarters of the global population), alongside those

that rely on income. Following the World Bank’s practice in constructing global poverty estimates, we

do not distinguish between income- and consumption-based measures when aggregating cross-country

distributions.
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Figure 2 illustrates the decomposition of average inequality into between- and within-

country components, as defined in equation 2. Panel (a) presents the evolution of average

inequality over time, while Panel (b) applies a logarithmic transformation to express the

multiplicative decomposition as an additive decomposition of inequality growth rates, ex-

ploiting the link between logarithms and growth. The results show that global inequality

declined steadily between 1990 and 2014, before experiencing a modest increase, particu-

larly between 2018 and 2021. This evidence of a reversing trend is consistent with recent

observations by Deaton (2021), Kanbur et al. (2022), and Milanovic (2024). In 2024, Av-

erage Inequality was about 5, meaning that the expected income ratio of two randomly

selected individuals was 5. This figure had reached a low of about 3.6 in 2018, before

rising again to 3.8 in 2024. Therefore, the expected income ratio between two randomly

selected individuals globally was around 3.8 in 2024.

Throughout the 1990-2024 period, changes in global inequality were driven primarily

by shifts in between-country inequality, while within-country inequality remained rela-

tively stable. This result is consistent with the literature on global inequality decomposi-

tion (Lakner and Milanovic 2016; Kanbur 2019; Milanovic 2024) and on the convergence

of low- and middle-income countries (Patel et al. 2021; Kremer et al. 2022).

Figure 3 o!ers an alternative visualization of the same data, showing how the between-

and within-country components interact to jointly determine total inequality. It shows

that the long-term decline in global inequality from 1990 to 2024 was largely the result

of falling between-country inequality. By contrast, within-country inequality rose slightly

over the same period, but its contribution to overall inequality remained limited.

Table 1 presents the components of the additive decomposition of average inequality

by country, focusing on the 25 countries that contribute most to global inequality. The

final column shows each country’s overall contribution. We identify three distinct groups

among these top contributors, based on the primary source of their contribution. First,

large middle-income countries such as India, China, Nigeria, Pakistan, and Indonesia

appear on the list primarily due to their large populations and relatively low average

incomes, which result in significant contributions to between-country inequality. This
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Figure 3: Multiplicative decomposition: interaction of between- and within-country com-
ponents over time

Data source: PIP data (World Bank). Income is measured at 2017 $PPP per person per day and the distribution is

bottom coded at $0.25 (see Kraay et al. 2024 for a discussion).

is reflected in the high weight εg(2) in the decomposition. Second, several low-income

countries—such as the Democratic Republic of Congo, Mozambique, Madagascar, Sudan,

and Yemen—contribute heavily because of very low average incomes, despite modest

population sizes and within-country inequality levels. Third, countries like Brazil, the

United States, and South Africa are included due to the high levels of inequality within

these countries.

Figure 4 provides a visual representation of these results, also showing trends in the

contributions of the most populous countries over time. A country’s contribution depends

on two key factors: average inequality within the country, shown on the vertical axis, and

its weight, shown on the horizontal axis. This weight is proportional to population size

and inversely proportional to average income.

Countries such as India and China appear in the bottom-right quadrant of the fig-

ure: their high weight reflects large populations relative to average income. In contrast,
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Table 1: Inequality decompositions: country contributions and weights in 2024 (top 25)

Average Average Prosperity Average Multiplicative Additive Country
Population income poverty gap inequality decomposition decomposition Contribution

Country (million) $/day day/2.15$ Ig(2) ωg(2) εg(2) εg(2) ⇔ Ig(2)
1. India 1442 5.5 0.55 6.4 1.4 0.26 0.62 0.87
2. China 1412 16.6 0.19 2.2 1.5 0.08 0.20 0.29
3. Congo, Dem. Rep. 106 1.9 2.02 23.5 1.8 0.05 0.13 0.23
4. Nigeria 229 3.6 0.88 10.2 1.5 0.06 0.15 0.22
5. Pakistan 245 5.2 0.53 6.2 1.3 0.05 0.11 0.14
6. Indonesia 280 7.9 0.39 4.6 1.5 0.03 0.08 0.12
7. Ethiopia 130 4.8 0.66 7.6 1.5 0.03 0.06 0.09
8. Bangladesh 175 6.4 0.47 5.4 1.4 0.03 0.06 0.09
9. Mozambique 35 2.2 2.06 24 2.1 0.02 0.04 0.08
10. Madagascar 31 1.6 2.28 26.5 1.7 0.02 0.04 0.08
11. Tanzania 69 3.6 0.97 11.3 1.6 0.02 0.05 0.07
12. Brazil 218 22.1 0.27 3.1 2.7 0.01 0.02 0.06
13. Philippines 119 7.3 0.45 5.2 1.5 0.02 0.04 0.06
14. Sudan 49 3.1 1 11.7 1.4 0.02 0.04 0.05
15. Kenya 56 3.8 0.87 10.1 1.6 0.01 0.03 0.05
16. Uganda 50 3.7 0.98 11.4 1.7 0.01 0.03 0.05
17. Egypt, Arab Rep. 114 7.5 0.39 4.5 1.3 0.02 0.04 0.05
18. Yemen, Rep. 35 2.6 1.23 14.3 1.5 0.01 0.03 0.05
19. United States 337 82.7 0.13 1.5 4.9 0.00 0.01 0.05
20. Zambia 21 2.6 1.97 22.9 2.4 0.01 0.02 0.05
21. Angola 38 5.4 1.06 12.4 2.6 0.01 0.02 0.04
22. South Africa 61 12 0.65 7.6 3.6 0.00 0.01 0.04
23. Malawi 21 2 1.66 19.3 1.6 0.01 0.03 0.04
24. Mexico 129 17.3 0.23 2.6 1.8 0.01 0.02 0.03
25. Niger 28 2.9 1.02 11.9 1.4 0.01 0.02 0.03

Notes: Data source: PIP data (World Bank). Income is measured at 2017 $PPP per person per

day and the distribution is bottom coded at $0.25 (see Kraay et al. 2024 for a discussion). Average

poverty and the prosperity gap are estimated following Sterck (2024) and Kraay et al. (2024).

Inequality is estimated using equation (17). Weights are estimated using equations (13) and (14)

for ω = 2.

countries like Brazil and the United States appear in the top-right quadrant, due to high

levels of within-country inequality.

The figure also tracks changes over time for countries with more than 200 million

inhabitants. China’s contribution to global inequality declined markedly between 1990

and 2024. While its population grew by approximately 24% and within-country inequality

remained relatively stable, average income increased eightfold.15 As a result, China’s

weight in the global inequality decomposition decreased substantially.

By contrast, the weight assigned to the United States increased significantly over the

same period. This rise was driven by increasing within-country inequality, which outpaced

economic growth. In 1990, the average income ratio between two randomly selected US

individuals was 2.3; by 2024, this ratio had more than doubled to 4.8. In comparison,

average income in the US increased by 40% over the same period.

15
Following equation (16), average poverty fell dramatically over the same period—from 1.5 days to

earn $2.15 in 1990 to just 0.2 days in 2024, an 88% reduction.
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Figure 4: Additive decomposition: country weight vs. within-country inequality in 2024,
with evolution over time for countries with more than 200 million inhabitants

Data source: PIP data (World Bank). Income is measured in 2017 $PPP and the distribution is bottom coded at

$0.25 per person per day (see Kraay et al. 2024 for a discussion). Inequality is estimated using equation (17). Weights

are estimated using equation (14) for ω = 2.

4.2 Inequality in the US

We further analyze income inequality in the United States, relying on data from IRS

Tax Form 1040 on Adjusted Gross Income (AGI). The data was compiled by Rinz and

Voorheis (2023) for their study of income convergence across US states. For each state

and year from 1998 to 2019, the dataset provides average AGI by percentile. We make

two adjustments to the data: (1) we express all incomes in constant 2017 dollars using

the CPI-U index; and (2) we linearly interpolate 68 missing data points—representing

just 0.06% of the sample—based on adjacent percentiles.

Figure 5 presents the multiplicative decomposition of average income inequality into

between- and within-state components. Panel (a) shows the evolution of US inequality

over time, while Panel (b) applies a logarithmic transformation to convert the multiplica-

tive decomposition into an additive decomposition of inequality growth rates. The results

reveal a general rise in US income inequality between 1998 and 2019, with a temporary

22



(a) Inequality trends (b) 5-year growth rates

Figure 5: Multiplicative decomposition: evolution of between- and within-state inequality
over time (1998—2019)

Data source: Adjusted gross income (AGI) from IRS Tax Form 1040, as provided by Rinz and Voorheis (2023).

spike during the 2008 financial crisis.

In contrast to global inequality, income inequality in the United States is driven pri-

marily by disparities within states. Take California—the most populous state—as an

example: in 2019, daily incomes ranged from $3.4 at the bottom percentile and $36 at

the 10th percentile to $572 at the 90th percentile and $7,379 at the top percentile. By

comparison, inequality between states is minimal. In 2019, average daily incomes ranged

from $170 in Mississippi to $393 in Washington, District of Columbia.

Between 1998 and 2019, changes in U.S. income inequality were overwhelmingly driven

by shifts in within-state inequality, while between-state inequality remained low and

remarkably stable.16 The persistence of low between-state inequality aligns with the

literature on income convergence, which finds that the rapid convergence of per-capita

incomes across US states observed before the 1990s has slowed in recent decades (Barro

and Sala-i Martin 1992; Ganong and Shoag 2017; Rinz and Voorheis 2023).

Figure 6 presents the components of the additive decomposition of US inequality by

state (see Appendix Table A.1 for details). It also highlights trends over time for states

with either a high contribution to US inequality (greater than 0.1) or high within-state

inequality (greater than 5). A state’s contribution is determined by two factors: its

average within-state inequality, shown on the vertical axis, and its weight in the national

16
Appendix Figure A.1 visualizes the interaction between between- and within-state components,

further emphasizing that national inequality is largely driven by within-state variation.
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decomposition, shown on the horizontal axis. The weight is proportional to the state’s

population size and inversely proportional to its average income.

States such as California and Texas appear on the right-hand side of the figure, re-

flecting their substantial weight. These larger weights are primarily driven by their large

populations, since average income levels across states are relatively similar. By contrast,

states like Alaska, Connecticut, New York, and Washington, D.C. appear on the upper-

left quadrant. These states exhibit exceptionally high within-state inequality but have

relatively small populations, which reduces their overall weight in the national decompo-

sition.

The figure also tracks changes over time for a subset of large states and states with

particularly high inequality. In fact, within-state inequality has increased over time in

every state—including those not shown in the figure. Inequality is generally very high in

all US states and has been increasing over the past decades. For example, in California,

the expected income ratio between two randomly selected individuals rose from 3.4 in

1998 to 4.7 in 2019. The increase was even more pronounced in Alaska, where the same

ratio grew from 5.2 to 7.8 over the same period.
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Figure 6: Additive decomposition: state weight vs. within-state inequality in 2019, with
evolution over time for selected states (1998—2019)

Data source: Adjusted gross income (AGI) from IRS Tax Form 1040, as provided by Rinz and Voorheis (2023).

Inequality is estimated using equation (17). Weights are estimated using equation (14) for ω = 2.

5 Conclusion

This paper introduced a new class of inequality measures that expands the analytical

toolkit for decomposing income inequality. Building on alternative forms of decomposi-

tion—multiplicative within- and between-group decomposition, and additive decomposi-

tion by subgroups—we derived a single-parameter family of inequality indices that satisfy

both forms under weak assumptions. The weights used in these decompositions o!er a

transparent interpretation: they sum to one in the multiplicative case and vary system-

atically with subgroup population and income levels. For ϑ > 1, the decompositions give

greater emphasis to inequality in large and poor populations.

Among this class, the measure with an inequality aversion parameter of ϑ = 2 stands

out for both its empirical relevance and intuitive appeal. It is the inequality measure

corresponding to the Prosperity Gap, a measure was adopted by the World Bank to

monitor Shared Prosperity, one if its key objectives. Its interpretation is intuitive. It
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corresponds to the expected income ratio between two randomly selected individuals.

Alternatively, the measure can be understood as the average number of days an individual

would need to get the mean income, or as the average factor by which individual incomes

must be multiplied to reach the mean.

Taken together, our findings provide a new perspective on inequality measurement

and open new avenues for empirical research. The proposed class of measures allows

for more interpretable and policy-relevant decompositions of inequality—both in cross-

sectional analyses and over time. Its direct connection to average poverty and average

income o!ers a coherent and unified framework for jointly monitoring inequality, poverty,

and prosperity, making it well-suited for both academic research and practical policy

evaluation.
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Foster, J. E. and M. Székely (2008). Is economic growth good for the poor? tracking low

incomes using general means. International Economic Review 49 (4), 1143–1172.

Ganong, P. and D. Shoag (2017). Why has regional income convergence in the us declined?

Journal of Urban Economics 102, 76–90.

27



Haddad, C. N., D. G. Mahler, C. Diaz-Bonilla, R. Hill, C. Lakner, and G. Lara Ibarra

(2024). The world bank’s new inequality indicat or: The number of countries with high

inequality. Policy Research Working Paper Series (10796).

Kakwani, N. (1980). On a class of poverty measures. Econometrica: Journal of the

Econometric Society , 437–446.

Kanbur, R. (2019). Inequality in a global perspective. Oxford Review of Economic

Policy 35 (3), 431–444.

Kanbur, R., E. Ortiz-Juarez, and A. Sumner (2022). The global inequality boomerang.

IZA Discussion Papers .

Kot, S. M. and P. Paradowski (2022). The atlas of inequality aversion: theory and em-

pirical evidence on 55 countries from the luxembourg income study database. EQUI-

LIBRIUM Quarterly Journal of Economics and Economic Policy 17, 261–316.
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Online Appendix

A Proofs

A.1 Proof of Lemma 3

Proof. Take any partition of the population and let subgroup 1 be any subgroup contain-

ing two or more individuals. If this subgroup has n1 individuals with distribution y1 and

mean µ1, define x1 to be another distribution over n1 individuals with the same mean µ1

such that I (x1) ⇒= I (y1). Normalization ensures that a suitable choice of x1 can always

be made.

The distributions y =
(
y1, y2, ..., yG

)
and x =

(
x1, y2, ..., yG

)
have both the same

distribution of means and subgroup population: µ, n. Therefore, applying Additive

decomposability in subgroups

I(y) ↑ I(x) =



G∑

g=1
εg(µ, n)I(yg)



 ↑



G∑

g=1
εg(µ, n)I(xg)



 (18)

= ε1(µ, n)

I

(
y1

)
↑ I

(
x1

)
.

Since I(y)↑I(x) is unchanged if we partition y =
(
y1,

(
y2, ..., yG

))
and x =

(
x1,

(
y2, ..., yG

))
,

I(y) ↑ I(x) = ε1(µ1,
nµ ↑ n1µ1

n ↑ n1
, n1, n ↑ n1)


I

(
y1

)
↑ I

(
x1

)
. (19)

So in general εg(µ, n) = ε (Yg, Y, ng, n) where Yg = ngµg and Y = µn.

Now take the partitions y =
(
(y1, y2) ,

(
y3, ..., yG

))
and x =

(
(x1, y2) ,

(
y3, ..., yG

))
. Once

again, the di!erent partition does not change I(y) ↑ I(x):

I(y) ↑ I(x) = ε (Y1 + Y2, Y, n1 + n2, n)

I

(
y1, y2

)
↑ I

(
x1, y2

)
. (20)

Observe that I (y1, y2)↑I (x1, y2) = ε(Y1, Y1 +Y2, n1, n1 +n2) [I (y1) ↑ I (x1)]. Therefore,

I(y) ↑ I(x) = ε (Y1 + Y2, Y, n1 + n2, n)

ε(Y1, Y1 + Y2, n1, n1 + n2)


I

(
y1

)
↑ I

(
x1

)

(21)

Moreover, we have shown before–equation (19)—that I(y)↑I(x) = ε(Y1, Y, n1, n) [I (y1) ↑ I (x1)].
Combining (19) and (21), and rearranging, we get

ε(Y1, Y1 + Y2, n1, n1 + n2) = ε (Y1, Y, n1, n)
ε (Y1 + Y2, Y, n1 + n2, n) .

Keeping Y = Ỹ and n = ñ constant, and defining ϱ (µg, ng) = ε
(
ngµg, Ỹ , ng, ñ

)
, we

obtain
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ε(Y1, Y1 + Y2, n1, n1 + n2) =
ε

(
Y1, Ỹ , n1, ñ

)

ε
(
Y1 + Y2, Ỹ , n1 + n2, ñ

)

= ϱ (µ1, n1)
ϱ

(
n1µ1+n2µ2

n1+n2
, n1 + n2

) = ϱ (µ1, n1)
ϱ (µ, n) .

Thus, in general,

εg (µ, n) = ε (Yg, Y, ng, n) = ϱ (µg, ng)
ϱ (µ, n) .

Therefore,

I (y) =
G∑

g=1

ϱ (µg, ng)
ϱ (µ, n) I (yg) .

A.2 Proof of Lemma 4

Proof. Let i, j be two individuals and chose any partition in which y1 = (yi, yj). Let

x1 = (µ1, µ1) where µ1 = (yi + yj) /2. Then, substituting (8) into (19) gives

I
(
(yi, yj) , y2, ..., yG

)
↑ I

(
(µ1, µ1) , y2, ..., yG

)
= ϱ (µ1, 2)

ϱ (µ, n) [I (yi, yj) ↑ I (µ1, µ1)]

I
(
(yi, yj) , y2, ..., yG

)
= ϱ (µ1, 2)

ϱ (µ, n) [I (yi, yj) ↑ I (µ1, µ1)] + I
(
(µ1, µ1) , y2, ..., yG

)

I
(
(yi, yj) , y2, ..., yG

)
= ϱ (µ1, 2)

ϱ (µ, n) [I (yi, yj) ↑ 1] + I
(
(µ1, µ1) , y2, ..., yG

)
.

Di!erentiating with respect to yi and yj gives:

Ii (y) =
↼ ϖ(µ1,2)

ϖ(µ,n)
↼yi

I (yi, yj) + ϱ (µ1, 2)
ϱ (µ, n)

↼I (yi, yj)
↼yi

↑
↼ ϖ(µ1,2)

ϖ(µ,n)
↼yi

+ ↼I ((µ1, µ1) , y2..., yG)
↼µ1

↼µ1
↼yi

Ij (y) =
↼ ϖ(µ1,2)

ϖ(µ,n)
↼yj

I (yi, yj) + ϱ (µ1, 2)
ϱ (µ, n)

↼I (yi, yj)
↼yj

↑
↼ ϖ(µ1,2)

ϖ(µ,n)
↼yj

+ ↼I ((µ1, µ1) , y2..., yG)
↼µ1

↼µ1
↼yj

.

We can now compute Ii (y) ↑ Ij (y). Notice that ϱµ1
ϱyi

= ϱµ1
ϱyj

= 1
2 . Moreover,

ϱ
ω(µ1,2)
ω(µ,n)
ϱyi

=
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ϱ
ω(µ1,2)
ω(µ,n)
ϱyj

. Indeed,
ϱ

ω(µ1,2)
ω(µ,n)
ϱyi

depends on ϱµ1
ϱyi

and ϱµ
ϱyi

, which are the same for yi and yj.

Thus,

Ii (y) ↑ Ij (y) = ϱ (µ1, 2)
ϱ (µ, n)

↼I (yi, yj)
↼yi

↑ ϱ (µ1, 2)
ϱ (µ, n)

↼I (yi, yj)
↼yi

ϱ (µ, n) [Ii (y) ↑ Ij (y)] = ϱ (µ1, 2)
(

↼I (yi, yj)
↼yi

↑ ↼I (yi, yj)
↼yj

)

.

Hence,

ϱ (µ, n) [Ii (y) ↑ Ij (y)] = ϱ
(

yi+yj

2 , 2
)

(I1 (yi, yj) ↑ I2 (yi, yj))
= f (yi, yj)

(22)

for some function f , and

f (yi, yj) + f (yj, yk) = ϱ (µ, n) [Ii (y) ↑ Ij (y)] + ϱ (µ, n) [Ij (y) ↑ Ik (y)]
= ϱ (µ, n) [Ii (y) ↑ Ik (y)]
= f (yi, yk)

for all yi, yj, yk.

Now,

f (yi, yj) + f (yj, yk) = f (yi, yk) ⇑⇓ f (yi, yj) = f (yi, yk) ↑ f (yj, yk)

and if we define ς↓ (a) = f (a, 0), we can rewrite this as

f (yi, yj) = f (yi, 0) ↑ f (yj, 0) = ς↓ (yi) ↑ ς↓ (yj) . (23)

Notice that here we have defined a function ς (t), t → R+, whose derivative corresponds

to f (t, 0). Combining (22) and (23),

ϱ (µ, n) [Ii (y) ↑ Ij (y)] = ς↓ (yi) ↑ ς↓ (yj)

ϱ (µ, n) Ii (y) ↑ ς↓ (yi) = ϱ (µ, n) Ij (y) ↑ ς↓ (yj) .

Observe that on each side we have two derivatives of two di!erent functions (I and

ς) with respect to the same variable: yi on the left and yj on the right. We can write

each side as the derivative of a function g (y) with respect to the considered individual

incomes yiand yj in y:

ϱ (µ, n) Ii (y) ↑ ς↓ (yi)︸ ︷︷ ︸
gi(y)

= ϱ (µ, n) Ij (y) ↑ ς↓ (yj)︸ ︷︷ ︸
gj(y)

.
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We thus have that gi (y) = gj (y) for all i, j, 17 and

g (y) = ϱ (µ, n) I (y) ↑
n∑

i=1
ς (yi) . (24)

Because all derivatives are the same (gi (y) = gj (y)) the function g should only depend

on the total income in y, which is a function of µ and n. Thus, we can set g (y) = ↽ (µ, n)
for some function ↽. However,

↽ (µ, n) = g (1nµ) = ϱ (µ, n) I (1nµ)
︸ ︷︷ ︸

=1

↑
n∑

i=1
ς (µ) = ϱ (µ, n) ↑

n∑

i=1
ς (µ) (25)

Hence, combining (24) and (25)

ϱ (µ, n) I (y) ↑
n∑

i=1
ς (yi) = ϱ (µ, n) ↑

n∑

i=1
ς (µ) .

ϱ (µ, n) I (y) = ϱ (µ, n) +
n∑

i=1
[ς (yi) ↑ ς (µ)]

I (y) = 1 + 1
ϱ (µ, n)

n∑

i=1
[ς (yi) ↑ ς (µ)] .

That ϱµ and ς↓ are continuous follows from the di!erentiability of I (imposed by

Continuity). Without loss of generality we may take ϱ (µ, n) > 0. The Transfer Principle
implies that ς is strictly convex.

This completes the necessity part of the proof. Su”ciency is straightforward and left

to the reader.

A.3 Proof of Lemma 5

Proof. From (9) we obtain

I (y) = 1 + 1
ϱ (µ, n)

n∑

i=1
[ς (yi) ↑ ς (µ)]

I



y, ..., y
︸ ︷︷ ︸

↑m



 = 1 + m

ϱ (µ, mn)
n∑

i=1
[ς (yi) ↑ ς (µ)] .

Replication invariance holds if and only if

1 + 1
ϱ (µ, n)

n∑

i=1
[ς (yi) ↑ ς (µ)] = 1 + m

ϱ (µ, mn)
n∑

i=1
[ς (yi) ↑ ς (µ)]

17
Thus, g (y) is a linear function whose total di!erentiation corresponds to ε (µ, n)

n
i=1 Ii (y) ↑n

i=1 ϑ↑ (yi).
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ϱ (µ, mn) = mϱ (µ, n) .

for all n ↗ 2. So we can write 2ϱ (µ, n) = ϱ (µ, 2n) = nϱ (µ, 2), which gives

ϱ (µ, n) = n
ϱ (µ, 2)

2 = nφ (µ)

where φ is positive and continuously di!erentiable.
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B Additional Figures and Tables
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Figure A.1: Multiplicative decomposition: interaction of between- and within-state com-
ponents over time

Data source: Adjusted gross income (AGI) from IRS Tax Form 1040, as provided by Rinz and Voorheis (2023).
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Table A.1: Inequality decompositions: US States contributions and weights in 2019

Average Average Prosperity Average Multiplicative Additive State
Population income poverty gap inequality decomposition decomposition Contribution

State (million) $/day day/2.15$ Ig(2) ωg(2) εg(2) εg(2) ⇔ Ig(2)
Alabama 5 206 0.037 0.43 3.5 0.02 0.02 0.07
Alaska 1 222 0.075 0.88 7.8 0.00 0.00 0.02
Arizona 7 232 0.034 0.4 3.7 0.02 0.03 0.09
Arkansas 3 199 0.039 0.46 3.6 0.01 0.01 0.04
California 40 318 0.032 0.37 4.7 0.10 0.10 0.48
Colorado 6 299 0.03 0.35 4.2 0.02 0.02 0.07
Connecticut 4 381 0.031 0.36 5.5 0.01 0.01 0.04
Delaware 1 240 0.033 0.38 3.7 0.00 0.00 0.01
District of Columbia 1 393 0.033 0.38 6 0.00 0.00 0.01
Florida 21 256 0.04 0.46 4.7 0.07 0.07 0.32
Georgia 11 238 0.037 0.43 4.1 0.04 0.04 0.15
Hawaii 1 234 0.036 0.42 4 0.00 0.00 0.02
Idaho 2 227 0.034 0.39 3.6 0.01 0.01 0.02
Illinois 13 285 0.033 0.38 4.4 0.04 0.04 0.16
Indiana 7 218 0.038 0.44 3.9 0.02 0.03 0.10
Iowa 3 232 0.03 0.35 3.3 0.01 0.01 0.04
Kansas 3 244 0.034 0.4 3.9 0.01 0.01 0.04
Kentucky 4 200 0.039 0.46 3.7 0.02 0.02 0.07
Louisiana 5 206 0.039 0.45 3.7 0.02 0.02 0.07
Maine 1 215 0.039 0.45 3.9 0.00 0.01 0.02
Maryland 6 300 0.03 0.35 4.2 0.02 0.02 0.07
Massachusetts 7 377 0.03 0.35 5.2 0.01 0.01 0.08
Michigan 10 232 0.039 0.45 4.2 0.03 0.03 0.15
Minnesota 6 282 0.03 0.35 3.9 0.02 0.02 0.06
Mississippi 3 170 0.04 0.47 3.2 0.01 0.01 0.05
Missouri 6 227 0.038 0.44 4 0.02 0.02 0.09
Montana 1 226 0.04 0.46 4.2 0.00 0.00 0.02
Nebraska 2 242 0.031 0.36 3.5 0.01 0.01 0.02
Nevada 3 240 0.036 0.42 4 0.01 0.01 0.04
New Hampshire 1 293 0.031 0.36 4.2 0.00 0.00 0.02
New Jersey 9 346 0.029 0.34 4.7 0.02 0.02 0.10
New Mexico 2 191 0.045 0.53 4 0.01 0.01 0.04
New York 19 318 0.034 0.4 5 0.05 0.05 0.25
North Carolina 10 234 0.036 0.42 4 0.04 0.04 0.14
North Dakota 1 268 0.028 0.33 3.5 0.00 0.00 0.01
Ohio 12 224 0.037 0.43 3.8 0.04 0.04 0.16
Oklahoma 4 207 0.039 0.45 3.8 0.02 0.02 0.06
Oregon 4 248 0.035 0.4 4 0.01 0.01 0.06
Pennsylvania 13 256 0.039 0.45 4.6 0.04 0.04 0.19
Rhode Island 1 246 0.035 0.41 4.1 0.00 0.00 0.01
South Carolina 5 218 0.037 0.43 3.8 0.02 0.02 0.07
South Dakota 1 242 0.035 0.41 4 0.00 0.00 0.01
Tennessee 7 225 0.038 0.44 4 0.02 0.02 0.10
Texas 29 256 0.036 0.42 4.3 0.09 0.09 0.39
Utah 3 275 0.028 0.33 3.6 0.01 0.01 0.03
Vermont 1 234 0.04 0.46 4.3 0.00 0.00 0.01
Virginia 9 293 0.031 0.36 4.2 0.02 0.02 0.10
Washington 8 321 0.029 0.33 4.3 0.02 0.02 0.08
West Virginia 2 181 0.044 0.51 3.7 0.01 0.01 0.03
Wisconsin 6 247 0.033 0.39 3.8 0.02 0.02 0.07
Wyoming 1 281 0.033 0.38 4.3 0.00 0.00 0.01

Notes: Data source: Adjusted gross income (AGI) from IRS Tax Form 1040, as provided by Rinz

and Voorheis (2023). Income is expressed in 2017 US$. Average poverty and the prosperity gap are

estimated following Sterck (2024) and Kraay et al. (2024). Inequality is estimated using equation

(17). Weights are estimated using equations (13) and (14) for ω = 2.
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