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1. Introduction2 
Health is central to individual well-being and societal advancement, yet it was not until the mid-20th century 
that economists began exploring its economic impacts. At that time, health standards in affluent countries 
were much lower than they are today, though significantly better than in the early 1900s. For example, in 
1900, approximately 18% of newborn males in the U.S. did not survive their first year, a rate comparable to 
that of 63-year-old adults by 2000 (Topel, 2017). A similar pattern was seen in Europe, where child mortality 
dropped from double digits in 1900 to just 0.5% in industrialized nations by 2000 (Atella, Francisci & 
Vecchi, 2017). Over the past century, life expectancy at birth has significantly increased thanks to various 
factors. These factors encompass decreased infant mortality rates, higher living standards, healthier lifestyles, 
improved education, and advancements in healthcare and medicine. For example, advancements in 
sanitation and health technologies, particularly vaccines and antibiotics, played a crucial role in combating 
infectious diseases (Alsan et al., 2018), which decreased infant mortality rates.  

Since the end of WWII, technological progress in the healthcare sector has driven a continuous increase in 
global life expectancy. Official data shows that, on average, in Europe, life expectancy has grown by more 
than two years each decade since the 1960s (Eurostat, 2025). More recently, these gains have been even 
larger. According to the World Health Organization (WHO), life expectancy at birth rose from 66.8 years in 
2000 to 73.1 years in 2019, marking a gain of over six years. In Africa, life expectancy increased by 10.6 
years, rising from 53 years in 2000 to 63.6 years in 2021. The role of pharmaceutical innovation in reducing 
premature mortality, especially in cancer treatment, underscores that medical progress is a key driver of 
human longevity (Lichtenberg, 2014, 2016, 2017). EUROSTAT projects that life expectancy in the 
European Union will reach 89.1 years for women and 84.6 for men by 2060, continuing the trend of 
extended lifespans. 

Medical innovations have powered massive improvements in healthcare, transforming fatal conditions into 
manageable ones, expanding access to care, and revolutionizing clinical procedures. Premature infants, for 
instance, who had minimal survival chances before the 1950s, now benefit from life-saving technologies 
such as mechanical ventilators and neonatal intensive care units. These advancements have added roughly 12 
years to the life expectancy of low-birthweight infants (Skinner, 2013). Cardiac care has also come a long 
way. From basic medications like beta-blockers and aspirin to advanced procedures like coronary bypass 
surgeries and implantable defibrillators, these innovations have slashed heart attack mortality in the United 
States by almost 50% between 1980 and 2000 (Skinner, 2013). 

Until around the early 2010s, technological innovation in healthcare followed a relatively gradual path. Major 
breakthroughs—such as advanced imaging systems, minimally invasive surgical techniques, and new 
generations of pharmaceuticals—were undeniably transformative, but they evolved over decades through 
incremental improvements and long development cycles. This slower pace allowed time for adaptation 
across healthcare systems, regulatory frameworks, and medical training (Blumenthal & Dixon, 2012; 
Wachter, 2015; Dorsey & Topol, 2016). In stark contrast, the current wave of innovation is advancing at an 
unprecedented speed, catalyzed by the sweeping digital transformation of healthcare. Today, progress is 
being driven by the rapid convergence of artificial intelligence, big data analytics, wearable biosensors, 
telemedicine, personalized genomics, and digitally enabled care processes. These technologies are not merely 
extending the capabilities of medicine; they are redefining the entire landscape of how care is delivered, 
analyzed, and experienced. Machine learning algorithms can now detect diseases such as diabetic retinopathy 
or certain cancers with diagnostic accuracy that rivals, or even surpasses, that of experienced clinicians 

2 This study was funded by the European Union - NextGenerationEU, Mission 4, Component 2, in the framework of the GRINS – 
Growing Resilient, INclusive and Sustainable project (GRINS PE00000018 – CUP D13C22002160001) and by Piano Nazionale 
Complementare PNC-I.1 “Iniziativa di ricerca per le tecnologie e percorsi innovativi in ambito sanitario e assistenziale”, D.D. 931 
del 06/06/2022, iniziativa “DARE – Digital lifelong prevention”, PNC0000002. The views and opinions expressed are solely those 
of the authors and do not necessarily reflect those of the European Union, nor can the European Union be held responsible for 
them.    
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(Topol, 2019a,b). Genomic sequencing, which once cost billions and took years to perform, can now be 
completed in days at a fraction of the cost, enabling a new era of precision medicine. The current digital 
revolution in medicine marks a pivotal turning point in the trajectory of technological innovation within the 
healthcare sector. Unlike previous waves of medical advancement, today’s progress is not only redefining 
what is medically possible but also drastically accelerating the speed at which innovation reaches clinical 
practice. This shift signals a fundamental change in how we will understand, implement, and govern medical 
technology in the years to come. 

This exponential acceleration also signals a groundbreaking change in the rhythm of medical progress. The 
boundaries between biomedical research, clinical practice, and digital technology are becoming increasingly 
porous, allowing innovations to move from concept to bedside with unprecedented speed. Moreover, this 
new landscape is not only about the tools we use but also about a paradigm shift in how healthcare systems 
operate: from reactive care to predictive and preventive models; from generalized treatments to personalized 
interventions; and from episodic visits to continuous, data-driven patient monitoring. The implications of 
this shift are profound. As we stand on the brink of an era where artificial intelligence co-pilots diagnosis 
and treatment decisions and where vast health datasets inform policy and research in real-time, the question 
is no longer if digital technology will redefine medicine but how quickly and how responsibly it will be integrated. 
The digital revolution may not appear just as another chapter in the story of medical progress—it may be a 
rewriting of the narrative itself.  

The need for this transformation is further amplified when considering the biopsychosocial model of health, 
which recognizes the intricate interplay between biological, psychological, and social factors in determining 
an individual’s well-being (Engel, 1978).3 This holistic perspective necessitates healthcare solutions that 
address the multifaceted needs of patients, extending beyond purely biological interventions to encompass 
their mental and social contexts. In the digital age, the influence of technology itself has become a significant 
determinant of health experiences and outcomes. Consequently, a “biopsychosocial-digital” approach has 
been proposed, advocating for the integration of the digital dimension into the traditional biopsychosocial 
framework (Ahmadvand et al., 2018). This expanded model acknowledges the profound impact of digital 
engagement on patients’ choices, behaviors, and overall health journey. Digital tools present unique 
opportunities to collect and analyze data related to all three domains of the biopsychosocial model, enabling 
a more nuanced and personalized approach to care. By leveraging technologies that monitor biological 
parameters, support mental well-being, and facilitate social connections, healthcare can move towards a 
more comprehensive strategy for measuring, preserving, and improving the health and quality of life of 
individuals. This includes recognizing the importance of an individual's ability to engage in activities and 
participate in society as key indicators of their overall well-being.  

This transformation is inextricably linked to one of the most critical challenges confronting contemporary 
healthcare systems: the persistent increase in costs. While technological advancements have undeniably 
revolutionized medical practice, leading to improvements in diagnostics, treatments, and patient outcomes, 
they have also contributed substantially to the rising costs of healthcare. In contrast to other sectors where 
technological innovation typically reduces costs while simultaneously improving outcomes, in healthcare, 
these advancements often yield both enhanced outcomes and increased expenditures (often through higher 
prices). The introduction of cutting-edge medical technologies often entails substantial expenses, 
encompassing research and development, acquisition, maintenance, and the specialized training required for 
healthcare professionals. Moreover, the availability of advanced technologies can lead to increased 
utilization, sometimes extending beyond medically necessary applications, further driving up costs. 
Consequently, healthcare expenditures have grown faster than in any other economic sector, especially since 

3 The biopsychosocial model has transformed healthcare by emphasizing the connection between biological, psychological, and 
social factors in health and disease, providing a more holistic approach than the traditional biomedical model. It is particularly useful 
for chronic illnesses, pain disorders, and mental health. However, challenges like reductionist medical education, insufficient 
interdisciplinary collaboration, and financial constraints hinder its implementation (Seyed Alitabar, 2025). 
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the latter decades of the 20th century. These cost increases have been driven by factors such as the 
development of treatments for previously untreatable diseases, the expansion of treatment access, and 
enhancements in treatment quality (Cutler, McClellan& Newhouse, 1998; Eggleston et al., 2011). 

The cost implications of new technologies depend on the type of innovation. Key considerations include 
whether the new treatment complements or substitutes existing ones, whether it is a standalone intervention 
or used in conjunction with others, and how it affects overall treatment costs. Additionally, the degree of 
dissemination and population coverage is critical. Technological advancements often result in broader 
applications, which can increase total spending even if individual unit costs decline (Weisbrod, 1991; Cutler 
& Huckman, 2003). Furthermore, the temporal realization of health and economic benefits must be 
accounted for, as some technologies yield cost savings only in the long term. Many technologies embody 
several of these characteristics simultaneously, complicating the assessment of their overall financial impact. 
One of the major challenges in this domain is accurately capturing quality improvements embedded in new 
technologies. As Rosen and Cutler (2007) note, while some evaluations suggest reasonable aggregate 
productivity growth in healthcare, others highlight significant inefficiencies. 

As digital tools become embedded across diagnostics, therapeutics, prevention activities, workforce 
management, and patient interaction, they challenge the economic models and institutional frameworks on 
which many national health systems—such as the NHS—are based. In this context, economic research is 
increasingly called upon to assess not only the effects of these technologies on efficiency and outcomes but 
also their distributional consequences, regulatory implications, and cost dynamics. This paper explores the 
economic dimensions of health system innovation considering the recent digital transformation. Drawing on 
developments in enabling technologies, digital health applications, and regulatory challenges, it offers a 
structured assessment of how innovation is reshaping healthcare systems and policy trade-offs. 

The paper is organized into nine sections. Section 2 provides a historical overview of the evolution of 
medical technologies, tracing the transition from public health interventions and pharmaceuticals to highly 
specialized and resource-intensive innovations to digital technologies. Section 3 presents a horizon scanning 
exercise and offers a taxonomy of emerging digital technologies with the potential to transform healthcare. 
Section 4 delves into the specific impact of artificial intelligence on healthcare systems, examining its role in 
clinical decision-making, resource optimization, and workforce planning. Section 5 expands the scope of 
analysis to a broader set of digital applications—such as telemedicine, digital therapeutics, and point-of-care 
diagnostics—and discusses how they are reshaping healthcare delivery and patient experience. Section 6 
provides a maturity assessment of digital health solutions, evaluating the degree to which different 
technologies are ready for widespread adoption based on technical, regulatory, and systemic criteria. Section 
7 discusses the broader impacts of these technologies on healthcare outcomes and the organization of the 
workforce, including their potential to improve productivity and reshape professional roles. Section 8 turns 
to the regulatory dimension, analyzing how institutions are managing the tension between rapid innovation 
and the requirements of safety, equity, and cost-effectiveness. Section 9 considers the economic implications 
of technological adoption for healthcare expenditure and explores whether digital innovation might alter the 
traditional cost-growth trajectory of health systems. Finally, Section 10 concludes by outlining future 
directions for research and policy, with an emphasis on anticipatory regulation, investment in digital 
infrastructure, and the need for coherent strategies to integrate innovation into health system reform. 

2. The Evolution of Medical Technologies: Expected Innovations 
in Healthcare Services, Processes, and Delivery Models 

In their 2019 article, “New Technologies and Costs,” published in the Oxford Research Encyclopedia of Economics 
and Finance, Atella and Kopinska provided a comprehensive synthesis of the evolution of medical 
technologies and their impact on healthcare systems, with particular attention to cost dynamics and 
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sustainability. This foundational work outlined the interplay between innovation, regulation, and expenditure 
in health systems like the UK’s National Health Service (NHS), offering a crucial baseline for understanding 
the challenges and opportunities posed by new technologies in healthcare up to the end of the 2010s. 

The authors traced the trajectory of technological change from the early public health revolutions of the 
20th century—characterized by gains in sanitation, nutrition, and infectious disease control—to the 
pharmaceutical and procedural innovations of the post-war decades. The development and diffusion of 
antibiotics, vaccines, surgical techniques, intensive care, and pharmaceuticals led to sharp improvements in 
population health and longevity. These innovations were associated mainly with systemic public health gains 
and, in many cases, provided cost-effective solutions to widespread clinical problems. 

However, from the 1980s onward, the authors noted a shift in the character of technological change. 
Innovations became increasingly specialized, sophisticated, and resource-intensive. In particular, the rise of 
biologic drugs, advanced diagnostic imaging, minimally invasive procedures, and, more recently, gene 
therapies and digital health tools marked a departure from earlier innovations that were typically 
mass-distributable and cost-scaling. These new technologies promised better patient outcomes but often did 
so at substantially higher costs, requiring significant investments in infrastructure, workforce training, and 
system reorganization. 

Atella and Kopinska (2019) identified five main domains of technological innovation: pharmaceutical 
products, medical and surgical procedures, medical devices, support systems (such as telehealth and 
electronic records), and precision medicine. Each domain displayed its own set of cost, regulatory, and 
evaluation challenges. For instance, the pharmaceutical sector increasingly relied on targeted therapies—such 
as biologics and monoclonal antibodies—that, while clinically effective, drove up the costs of care. 
Meanwhile, surgical and procedural innovations often enabled faster recovery and reduced inpatient time 
but introduced equity and access issues due to uneven availability and skill requirements. 

Since the publication of Atella and Kopinska’s work, the pace of medical technological development has 
accelerated dramatically. The last decade has witnessed not only a continuation of earlier trends but also the 
emergence of entirely new technological trajectories. The COVID-19 pandemic catalyzed rapid advances in 
digital health infrastructure, mRNA vaccine platforms, remote care, and real-time health data analytics. 
Artificial intelligence and machine learning have moved beyond the experimental stage to influence 
diagnostics, clinical decision-making, and health system management. Meanwhile, wearable devices, 
home-based monitoring, and personalized medicine have become increasingly mainstream. These 
developments suggest that the dynamics described up to 2019 have shifted substantially. Some technological 
domains have evolved far beyond expectations, while others have seen entirely new directions emerge.  

The continued advancement and integration of new technologies are now expected to drive significant 
innovations across various aspects of healthcare, extending beyond just the development of new products to 
encompass novel services, transformative processes, innovative care pathways, and new healthcare delivery 
models (OECD, 2019), to also meet the demands of an evolving patient demographic and drive progress in 
public health systems (Cecconi et al., 2025). Some of these anticipated advancements include (OECD, 2019; 
Goldsack et al., 2020; Patel et al., 2023): 

● New Services: Future healthcare is likely to see the emergence of AI-powered personalized health 
coaching and wellness programs that adapt to individual data and preferences. Remote rehabilitation 
services delivered through VR/AR platforms will allow patients to receive therapy conveniently in 
their own homes. Virtual consultations with medical specialists in remote or underserved areas will 
become more commonplace, significantly improving access to expert care. 

● Transformative Processes: AI-assisted diagnostics are expected to become increasingly sophisticated, 
enabling faster and more accurate disease detection, particularly in fields like medical imaging analysis. 
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The automation of data collection and analysis in clinical research will accelerate the pace of medical 
discovery. Robotic process automation will streamline administrative tasks within healthcare 
organizations, freeing healthcare professionals to dedicate more time to direct patient care. 

● Innovative Care Pathways: Integrated digital and in-person care models will likely become the norm, 
offering a hybrid approach that combines the convenience of remote monitoring and virtual 
consultations with the necessity of in-person examinations and procedures when required. Proactive 
and predictive healthcare, driven by continuous monitoring through wearable sensors and AI-powered 
risk assessment, will enable early interventions and the development of highly personalized prevention 
plans. 

● Novel Healthcare Delivery Models: Decentralized clinical trials (DCTs), leveraging digital technologies 
to enable remote participation, are poised to become a more prevalent model for conducting clinical 
research, potentially leading to greater patient participation and the collection of more real-world data. 
Hospital-at-home models, supported by comprehensive remote monitoring, telehealth services, and 
AI-powered virtual assistants, will enable patients with certain acute conditions to receive high-quality 
care in the comfort of their own homes. 

These digital transformations signal a paradigm shift in how healthcare is conceived, delivered, and 
experienced. For example, AI-driven triage systems in emergency departments are reducing wait times and 
optimizing resource allocation in real time. Predictive analytics platforms enable care teams to anticipate 
patient deterioration days before clinical signs emerge. Smart medication adherence tools, integrated with 
electronic health records, are improving outcomes in chronic disease management. Digital twins of 
patients—virtual replicas based on real-time data—are beginning to inform treatment simulations prior to 
intervention. These examples, which will be explored in more detail later in the chapter, illustrate how 
innovation is reconfiguring healthcare around proactive, patient-centered, and data-driven principles. 

3. Horizon Scanning: Enabling Technologies Revolutionizing 
Healthcare 

In the context of rapid technological change, shifting demographics, and evolving disease burdens, 
healthcare systems must become increasingly strategic and anticipatory in their planning. Horizon scanning 
has emerged as a critical tool for achieving this goal. Defined as a systematic process for identifying 
emerging trends, technologies, and potential threats before they become widely recognized or adopted, 
horizon scanning allows health systems to prepare proactively rather than reactively (National Academies of 
Sciences, Engineering, and Medicine, 2020). 

In the healthcare sector, horizon scanning plays a key role in informing policy, research prioritization, and 
resource allocation. By monitoring early signals of innovation in fields such as biotechnology, artificial 
intelligence, personalized medicine, and digital health, it supports timely decision-making regarding health 
technology assessments (HTA), reimbursement models, and service redesign (Oortwijn et al., 2018). For 
example, many national HTA agencies in Europe, such as those coordinated through the European 
Network for Health Technology Assessment (EUnetHTA), have integrated horizon scanning into their early 
dialogue processes to inform future evaluations and guide the adoption of new technologies (EuroScan 
International Network, 2020). 

For these reasons, we have run a horizon scanning exercise to understand what are the main technological 
trends that are nowadays pervading the healthcare sector, with the aim to anticipate disruptive developments 
and enable governments and health organizations to invest in infrastructure, workforce development, and 
regulatory frameworks that are aligned with future needs. Moreover, horizon scanning contributes to a more 
transparent and participatory planning culture. By incorporating multidisciplinary perspectives—spanning 
clinical, technological, social, and ethical domains—it promotes comprehensive foresight and builds 
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consensus around strategic priorities (Miles, 2010). In doing so, it supports the development of resilient 
health systems capable of adapting to complex and uncertain futures. As healthcare becomes more 
data-driven and interdependent with other sectors, such as technology and environmental planning, the 
systematic use of horizon scanning is becoming an essential component of sustainable health system 
governance. Its integration into national and institutional planning frameworks offers a path toward more 
agile, informed, and forward-looking healthcare decision-making. 

The result of this exercise is summarized in Table 1, where we report a comprehensive overview of the 
current and future landscape of digital enabling technologies in healthcare, presenting a taxonomy to 
categorize these diverse innovations and exploring their applications, potential, market impact, and the 
challenges associated with their implementation. While there is often overlap and synergy between different 
technologies, this classification helps in understanding the distinct contributions and potential of each 
category. The categories covered include Connectivity & Infrastructure, Data & Analytics, Devices & 
Wearables, Advanced Technologies, Advanced Computing, and Digital Therapeutics & Interventions.  

Table 1 - Taxonomy of Enabling Technologies in Healthcare 

Category Technology Description Current Applications in 
Healthcare 

Future Potential in 
Healthcare 

Connectivity 
& 
Infrastructure 

Telemedicine 
& Telehealth 

Provision of 
healthcare services 
remotely using 
telecommunications 
technology. 

Virtual consultations, 
remote monitoring, 
telediagnosis, 
telementoring. 

Seamless integration into 
hybrid care models, 
advanced telepresence, 
AI-assisted remote 
diagnostics. 

 Mobile 
Health 
(mHealth) 

Healthcare supported 
by mobile devices. 

Wellness/fitness apps, 
medication reminders, 
remote data collection, 
patient portals. 

Personalized health 
management apps, 
integration with wearables, 
chronic disease 
management. 

 Internet of 
Medical 
Things 
(IoMT) 

Network of 
connected medical 
devices and sensors. 

Remote patient 
monitoring, connected 
medical devices in 
hospitals, asset tracking. 

Real-time continuous 
monitoring, predictive 
alerts, connected hospitals, 
personalized treatment 
adjustments. 

Data & 
Analytics 

Electronic 
Health 
Records 
(EHRs) 

Digital versions of 
patient charts. 

Storing/accessing patient 
history, streamlining 
workflows, care 
coordination, basic 
analytics. 

True interoperability, AI 
integration for decision 
support, population health 
management, patient data 
access. 

 Big Data 
Analytics 

Analysis of large and 
complex healthcare 
datasets. 

Identifying trends, 
analyzing treatment 
outcomes, managing 
operations, public health 
surveillance. 

Predictive modeling for 
outcomes, personalized 
medicine cohorts, clinical 
trial optimization, insights 
into health determinants. 

 Artificial 
Intelligence 
(AI) 

Computer systems 
performing tasks 
requiring human 
intelligence. 

Medical image analysis, 
drug discovery assistance, 
potential diagnosis 
identification, 
administrative 
automation, chatbots. 

Highly accurate/rapid 
diagnostics, personalized 
treatment plans, predictive 
analytics for risk, AI virtual 
assistants, robotic surgery 
enhancement. 

 Machine 
Learning 
(ML) and 
Deep 

Algorithms allowing 
systems to learn from 
data. 

Predicting patient risk, 
analyzing genomic data, 
personalizing treatment 
protocols, improving 

More sophisticated 
predictive models, 
continuous learning from 
real-world data, identifying 
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Category Technology Description Current Applications in 
Healthcare 

Future Potential in 
Healthcare 

Learning 
(DL) 

diagnostic accuracy, 
clinical decision support. 

complex patterns, adaptive 
therapeutic interventions. 

 Natural 
Language 
Processing 
(NLP) 

Enabling computers 
to understand human 
language. 

Analyzing clinical notes, 
extracting information 
from text, powering 
medical chatbots. 

Automated medical 
literature summarization, 
sophisticated 
conversational agents, 
automated clinical 
documentation, analyzing 
patient narratives. 

Devices & 
Wearables 

Wearable 
Devices 

Electronic devices 
worn on the body 
collecting health data. 

Tracking activity/heart 
rate/sleep, consumer 
health monitoring, some 
remote patient 
monitoring. 

Continuous passive 
monitoring of wide 
parameters, seamless 
integration with healthcare 
platforms, early detection, 
diagnostic capabilities. 

 Connected 
Medical 
Devices 

Medical devices with 
connectivity features. 

Connected glucose 
meters, smart blood 
pressure cuffs, remote 
monitoring of infusion 
pumps/inhalers. 

Real-time adjustment based 
on data/AI, predictive 
alerts, enhanced data 
sharing, closed-loop 
systems. 

Advanced 
Technologies 

Blockchain Decentralized, 
distributed ledger 
technology. 

Securely storing/sharing 
patient data, supply chain 
management, professional 
credential verification, 
clinical trial data 
management. 

Interoperable 
patient-controlled records, 
healthcare data 
marketplaces, streamlined 
claims processing. 

 Augmented 
Reality (AR) 

Overlaying digital 
information onto the 
real world. 

Surgical 
planning/visualization, 
medical 
training/education, 
assisting nurses (e.g., vein 
finding). 

Image-guided surgery with 
real-time overlays, 
interactive anatomy 
learning, remote expert 
guidance, AR rehabilitation. 

 Virtual Reality 
(VR) 

Creating immersive, 
interactive simulated 
environments. 

Medical training 
simulations, pain 
management/therapy, 
exposure therapy, patient 
education. 

Highly realistic surgical 
training, immersive 
rehabilitation, VR 
telemedicine, advanced 
pain/psychological 
therapies. 

 Robotics Use of robots to 
perform tasks. 

Surgical robots, 
automated medication 
dispensing, laboratory 
automation, internal 
logistics. 

More 
advanced/autonomous 
surgical robots, increased 
role in direct patient care, 
sophisticated automated 
logistics. 

 3D Printing Creating 
three-dimensional 
objects layer by layer. 

Patient-specific 
prosthetics/implants, 
anatomical models for 
planning/training, 
customized medical 
devices/guides. 

Bioprinting tissues/organs, 
on-demand personalized 
medications, point-of-care 
device printing. 
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Category Technology Description Current Applications in 
Healthcare 

Future Potential in 
Healthcare 

 Digital Twins Virtual replicas 
updated with 
real-time data. 

Simulating 
organs/systems, 
optimizing hospital 
workflows/resources. 

Patient-specific digital 
twins for personalized 
treatment simulation, 
optimizing healthcare 
networks, revolutionizing 
clinical trials. 

Advanced 
Computing 

High-Perform
ance 
Computing 
(HPC) 

Use of 
supercomputers and 
parallel processing. 

Processing large genomic 
datasets, molecular 
simulations for drug 
discovery, complex 
medical imaging analysis. 

More sophisticated 
genomic analysis, 
accelerating drug discovery, 
advanced imaging 
analysis/reconstruction, 
large-scale public health 
modeling. 

 Quantum 
Computing 

Computing using 
quantum mechanics 
principles. 

Research into drug 
discovery simulation, 
exploring optimization for 
complex healthcare 
problems (currently 
R&D). 

Revolutionizing drug 
discovery/molecular 
simulation, highly 
personalized treatment 
planning, enhancing AI 
capabilities. 

Digital 
Therapeutics 
& 
Interventions 

Digital 
Therapeutics 
(DTx) 

Software delivering 
evidence-based 
therapeutic 
interventions. 

Managing chronic 
conditions (diabetes, 
mental health), substance 
abuse disorders. 

Integration into clinical 
workflows, 
personalized/adaptive 
interventions, expansion to 
wider conditions, remote 
monitoring/adjustment. 

 Digital Care 
Programs 

Comprehensive 
digital platforms 
supporting patient 
care/management. 

Remote monitoring 
programs, virtual 
rehabilitation, care 
coordination platforms, 
patient engagement tools. 

Highly 
integrated/personalized 
care pathways, AI-powered 
coordination/support, 
remote management of 
complex conditions. 

 

3.1. Connectivity & Infrastructure 
Technologies in this category focus on enabling communication, data exchange, and service delivery across 
geographical distances and between different stakeholders in the healthcare ecosystem. 

3.1.1. Telemedicine & Telehealth 
Telemedicine and telehealth encompass the use of electronic information and telecommunications 
technologies to support and promote long-distance clinical healthcare, patient and professional 
health-related education, public health, and health administration. This includes a wide range of services 
such as virtual consultations, remote patient monitoring, transmission of medical images, and remote 
medical education. 

Current Applications: Currently, telemedicine is widely used for routine consultations, follow-up appointments, 
managing chronic conditions, and providing access to specialists in remote or underserved areas (Ezeamii et 
al., 2024). It gained significant traction during the recent global pandemic, becoming an essential tool for 
maintaining access to care while minimizing physical contact. Telediagnosis, teleradiology, and telepathology 
are established applications that allow remote expert analysis of medical data. 

Future Potential: The future of telemedicine involves seamless integration into hybrid care models, where 
virtual and in-person care are combined based on patient needs. Advanced telepresence technologies, 

11 
 



including high-definition video and haptic feedback, could enable more complex remote examinations and 
procedures. AI could be integrated to assist with remote diagnostics and triage, further increasing efficiency 
and accessibility. The expansion of 5G networks will provide the necessary bandwidth for more 
sophisticated telemedicine applications. 

Quantitative Data: The global telemedicine market size was estimated to be valued at over $100 billion in 
recent years and is projected to grow significantly, with some reports predicting a compound annual growth 
rate (CAGR) of over 20% in the coming years (Grand View Research, 2024). The socio-economic impact 
includes reduced travel costs and time for patients, increased access to care for rural populations, and 
potentially lower healthcare costs by reducing hospital visits and admissions. 

Open Challenges: Challenges include ensuring equitable access to necessary technology and internet 
connectivity, addressing regulatory and reimbursement complexities across different regions, maintaining 
data privacy and security during transmission, and ensuring the quality and effectiveness of remote 
consultations compared to in-person visits. Clinician training and patient acceptance also remain important 
factors. 

3.1.2. Mobile Health (mHealth) 
mHealth refers to the practice of medicine and public health supported by mobile devices, such as mobile 
phones, patient monitoring devices, personal digital assistants (PDAs), and other wireless devices. It 
leverages the ubiquitous nature of mobile technology to provide health-related information, services, and 
data collection capabilities. 

Current Applications: Current applications include a vast array of wellness and fitness apps, medication 
reminder apps, symptom checkers, remote data collection from connected devices, and mobile access to 
patient portals for viewing health records and scheduling appointments (Deniz-Garcia et al., 2023). mHealth 
is also used in public health campaigns and data collection for disease surveillance. 

Future Potential: Future mHealth will be characterized by highly personalized health management through 
advanced apps that integrate data from multiple sources, including wearables, EHRs, and even genomic 
information. AI-powered mHealth apps could provide tailored health coaching, predict health risks based 
on user data, and offer just-in-time interventions. The role of mHealth in managing chronic diseases and 
promoting preventative care is expected to expand significantly. 

Quantitative Data: The global mHealth market is a substantial segment of digital health, with market size 
estimates varying but generally in the tens of billions of US dollars in 2024 and strong projected growth, 
exhibiting a CAGR of 11.8% by 2032 (Fortune Business Insights, 2024). The socio-economic impact 
includes empowering individuals to take a more active role in managing their health, potentially leading to 
improved health outcomes and reduced healthcare utilization for preventable conditions. 

Open Challenges: Key challenges include ensuring the accuracy and reliability of health information provided 
by apps, addressing data privacy and security concerns related to sensitive personal health data collected by 
mobile devices, regulatory oversight of medical-grade mHealth applications, and ensuring usability and 
accessibility across diverse user populations. 

3.1.3. Internet of Medical Things (IoMT) 
IoMT refers to the connected infrastructure of medical devices, software applications, and health systems 
and services. It involves the use of internet-connected devices to collect and transmit health data, enabling 
remote monitoring, tracking, and management of patients and medical assets. 

Current Applications: Current applications include remote patient monitoring devices for conditions like 
diabetes (connected glucose meters), cardiovascular disease (wearable ECG monitors), and respiratory 
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disorders (smart inhalers). IoMT is also used to track medical equipment within hospitals, manage inventory, 
and monitor environmental conditions in healthcare facilities (Huang, Wang et al., 2023). 

Future Potential: The future of IoMT involves real-time, continuous, and passive monitoring of a wide range 
of physiological parameters through advanced sensors and wearables. This will enable early detection of 
health deterioration, predictive alerts for critical events, and personalized adjustments to treatment plans 
based on continuous data streams. IoMT will also play a crucial role in connected hospitals, optimizing 
workflows and patient care through interconnected devices and systems. 

Quantitative Data: The IoMT market is experiencing rapid growth, with market size estimates in the tens of 
billions of US dollars and high projected CAGRs (38.5%) (Fortune Business Insights, 2025a). The 
socio-economic impact includes improved management of chronic diseases, reduced hospital readmissions, 
increased efficiency in healthcare operations, and the potential for proactive health interventions based on 
continuous data.  

Open Challenges: Significant challenges include ensuring the security of connected medical devices against 
cyber threats, managing the massive volume of data generated by IoMT devices, ensuring interoperability 
between different devices and platforms, addressing regulatory hurdles for connected medical devices, and 
establishing clear protocols for responding to data-driven alerts and insights. 

3.2. Data & Analytics 
This category focuses on the collection, storage, processing, analysis, and interpretation of healthcare data to 
generate insights and support decision-making. 

3.2.1. Electronic Health Records (EHRs) 

EHRs are digital versions of patients' paper charts containing medical history, diagnoses, medications, 
treatment plans, immunization dates, allergies, radiology images, and laboratory and test results. They are 
designed to be shared across different healthcare settings. 

Current Applications: EHRs are fundamental to modern healthcare administration and delivery. They are used 
for storing and accessing patient information, streamlining clinical workflows, improving communication 
and coordination among healthcare providers, and supporting basic data analytics for reporting and quality 
improvement (Shen et al., 2025). Patient portals linked to EHRs allow patients to access their health 
information and communicate with providers. 

Future Potential: The future of EHRs lies in achieving true interoperability, allowing seamless and secure 
exchange of patient data across all healthcare providers and even between different countries. EHRs will be 
integrated with advanced AI and machine learning algorithms to provide real-time clinical decision support, 
identify patients at risk, and personalize treatment recommendations. They will also serve as a rich data 
source for research and public health initiatives. 

Quantitative Data: The global EHR market is substantial, valued at about $30 billion in 2024, with steady 
growth expected (CAGR of about 5% from 2025 to 2033) as adoption rates increase and systems become 
more sophisticated (Business Research Insights, 2024). The socio-economic impact includes improved care 
coordination, reduced medical errors due to better access to patient information, increased efficiency in 
administrative tasks, and the potential to leverage aggregated data for research and public health. 

Open Challenges: Major challenges include achieving true interoperability between disparate EHR systems, 
addressing data privacy and security concerns related to the centralization of sensitive patient information, 
the high cost of implementation and maintenance, usability issues that can lead to clinician burnout, and 
ensuring data quality and standardization. 
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3.2.2. Big Data Analytics 
Big Data Analytics involves the examination of large and complex datasets to uncover hidden patterns, 
correlations, trends, and other insights. In healthcare, these datasets can come from various sources, 
including EHRs, genomic data, medical imaging, wearable devices, and social media. 

Current Applications: Currently, big data analytics is used to identify trends in patient populations, analyze the 
effectiveness of different treatments, manage hospital operations and resource allocation, predict patient 
demand, and support public health surveillance and outbreak prediction (Khan et al., 2022). 

Future Potential: Future applications will include more sophisticated predictive modeling for individual patient 
outcomes, identifying specific patient cohorts for highly personalized medicine approaches, optimizing 
clinical trial design and recruitment, and gaining deeper insights into the social and environmental 
determinants of health by integrating diverse data sources. Real-time analytics will enable proactive 
interventions. 

Quantitative Data: The global healthcare analytics market is valued at tens of billions of US dollars and is 
projected to reach more than 120 billion by 2033, growing at a CAGR of 24.3% from 2024 to 2033, driven 
by the increasing availability of health data and the need for data-driven decision-making (Allied Market 
Research, 2024). The socio-economic impact includes the potential for improved patient outcomes through 
personalized interventions, cost savings through optimized operations and resource allocation, and 
advancements in medical research and public health strategies. 

Open Challenges: Challenges include managing and processing the sheer volume, velocity, and variety of 
healthcare data, ensuring data quality and standardization across disparate sources, addressing data privacy 
and security concerns when working with large datasets, the need for skilled data scientists and analysts in 
healthcare settings, and the ethical considerations related to using patient data for analytics. 

3.2.3. Artificial Intelligence (AI) 
AI refers to the ability of machines to perform tasks autonomously, mimicking human cognitive functions, 
namely, learning and problem-solving (Jiang et al., 2017; Topol, 2019a,b).  

Within the healthcare domain, subfields such as machine learning and deep learning are particularly relevant. 
Machine learning (ML), a subset of AI, leverages vast datasets to discern patterns and progressively enhance 
their predictive accuracy. Deep learning (DL), a further subset of ML characterized by its intricate, 
multi-layered neural networks, has demonstrated a remarkable capacity for understanding complex language 
structures and contextual nuances. Natural Language Processing (NLP) refers to AI techniques that enable 
machines to understand and generate human language. At the intersection of DL and NLP lie Large 
Language Models (LLMs), which leverage deep learning architectures to process and produce human-like 
language. The Venn diagram in Figure 1 illustrates the hierarchical and overlapping relationships between 
major areas within AI. The figure highlights how LLMs draw on advances in both deep learning and 
language understanding. LLMs are an example of Generative AI (GenAI). However, not all Generative AIs 
are LLMs, including also, among others, Generative Adversarial Networks (GANs), mainly for 
images/videos, and generative models specifically designed to create novel chemical structures. 

Figure 1 - Conceptual relationships among key subfields of Artificial Intelligence. 
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Source: Our elaboration. 

 

Current Applications: AI is increasingly central to the evolution of modern medicine (OECD, 2023). AI is 
currently being applied in medical image analysis (e.g., detecting anomalies in X-rays, CT scans, and MRIs), 
speeding up drug discovery and development by analyzing vast biological datasets, identifying potential 
diagnoses based on patient symptoms and history, and automating administrative tasks like scheduling and 
billing (Yu et al., 2018; Mak & Pichika, 2019; Kanakia et al., 2025; Morone et al., 2025). AI-powered chatbots 
are also used for initial patient interaction and information provision (Bajwa et al., 2021). 

Future Potential: The future of AI in healthcare holds immense promise, including highly accurate and rapid 
diagnostic tools, personalized treatment plan generation based on individual patient profiles (including 
genomics), predictive analytics for identifying patients at high risk of developing certain conditions or 
experiencing adverse events, and AI-powered virtual assistants that can provide comprehensive patient 
support and even perform initial triage. AI could also revolutionize robotic surgery with increased precision 
and autonomy. 

Quantitative Data: The global AI in the healthcare market is a rapidly expanding sector, valued in the billions 
of US dollars, and projected to grow at a very high CAGR of 38.62% from 2025 to 2030 (Grand View 
Research, 2024). The socio-economic impact includes the potential for earlier and more accurate diagnoses, 
the development of more effective and personalized treatments, increased efficiency for healthcare 
professionals by automating routine tasks, and potentially reducing healthcare costs in the long run. 

A recent Deloitte research (Deloitte, 2024) reveals that applying AI, particularly GenAI, in pharmaceutical 
R&D can generate $5–7 billion in value over five years for a top 10 biopharma company. R&D holds the 
greatest potential, contributing 30–45% of this value. This is achieved through the acceleration of drug 
development processes and substantial cost reductions. GenAI can significantly improve the modeling of 
proteins and other biomolecules, which is crucial in identifying and validating new drug candidates at a 
much faster pace. By analyzing vast repositories of scientific data, GenAI supports the discovery of novel 
drug targets and illuminates previously unknown connections between diseases. These insights are then 
tested and validated through laboratory experiments, demonstrating a highly productive synergy between 
AI-generated analysis and the insights of human researchers. 

Open Challenges: Significant challenges include ensuring the explainability and transparency of AI 
decision-making processes (the "black box" problem), addressing potential biases in AI algorithms that 
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could lead to health disparities, regulatory approval and validation of AI-based medical devices and 
diagnostics, ensuring data privacy and security when using large datasets for AI training, and the ethical 
considerations surrounding the use of AI in critical healthcare decisions. Despite significant advances in AI 
research, the deployment and adoption of AI technologies in clinical practice remain limited, pending the 
development and implementation of trustworthy AI tools (Lekadir et al., 2025). 

3.2.4. Machine Learning (ML) and Deep Learning (DL) 
Machine Learning, a subset of AI, focuses on developing algorithms that allow computer systems to learn 
from data without being explicitly programmed. Deep learning is itself a subset of machine learning that 
uses multi-layered neural networks to learn representations from large amounts of data automatically. In 
healthcare, this involves training models on medical datasets to identify patterns, make predictions, and 
improve performance over time (Esteva et al., 2019; Topol, 2019a,b). 

Current Applications: ML is currently used to develop algorithms for predicting patient risk factors (e.g., for 
developing chronic diseases or readmission), analyzing genomic data to identify genetic predispositions, 
personalizing treatment protocols based on patient characteristics and historical data, and improving the 
accuracy of diagnostic tools through pattern recognition (Deo, 2015; Rajkomar et al., 2019; Zeleke et al., 
2023). DL models, in particular, have shown strong performance in medical imaging, avoiding delayed 
diagnosis or misdiagnosis of acute myocardial infarction (AMI), enabling radiologists to identify anomalies 
such as tumors or fractures with near-human or even superior accuracy (Litjens et al., 2017; Liu et al., 2021; 
Huang, Yang et al., 2023). 

Future Potential: Future ML applications will involve more sophisticated predictive models that can anticipate 
health events with greater accuracy, continuous learning from real-world patient data to refine diagnoses and 
optimize treatments in real-time, identifying subtle and complex patterns in large biological and clinical 
datasets that are imperceptible to humans, and developing adaptive therapeutic interventions that adjust 
based on patient response. Deep learning, in particular, holds promise for revolutionizing image-based 
diagnostics, enabling nuanced analysis of radiological, pathological, and genomic images. 

Quantitative Data: As a core component of AI, ML—including DL—represents a significant and expanding 
area within the healthcare market, contributing substantially to the overall AI market size and growth. The 
socio-economic impact reflects AI’s broader potential: improved predictive accuracy, personalized 
interventions, and the ability to extract valuable knowledge from increasingly complex and heterogeneous 
healthcare data. 

Open Challenges: Key challenges include the need for large, high-quality, and unbiased datasets to train ML 
models, ensuring interpretability and transparency—particularly for DL architectures, which are often 
considered “black boxes”—addressing overfitting and generalization limits, managing the intensive 
computational demands of deep neural networks, and confronting the ethical and legal implications of using 
predictive models in clinical decision-making, especially in terms of bias, equity, and accountability 
(Obermeyer et al., 2019). Moreover, disparities in the datasets used to train AI systems may inadvertently 
perpetuate existing inequities in healthcare delivery (Wiens et al., 2019). To mitigate these concerns, it is 
essential to adopt robust strategies for data collection, validation, and continuous model updating. This 
includes curating diverse and representative datasets and ensuring that algorithms are periodically retrained 
to reflect evolving clinical knowledge and patient populations (Chen et al., 2020). Post-deployment 
monitoring and algorithm auditing are critical not only for performance optimization but also for addressing 
ethical concerns, such as accountability and transparency (Morley, Floridi et al., 2020).  
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3.2.5. Natural Language Processing (NLP) 
NLP is a field of AI that focuses on enabling computers to understand, interpret, and generate human 
language. In healthcare, this is particularly relevant for processing and analyzing unstructured text data 
found in clinical notes, reports, and medical literature. 

Current Applications: NLP plays a pivotal role in unlocking insights from unstructured data—such as clinical 
notes, patient conversations, and EHR entries—comprising up to 80% of healthcare information (Chen et 
al., 2020). It enables extraction of relevant data points, improves predictive modeling, and automates 
administrative tasks like documentation and coding, which reduces clinician workload and enhances 
workflow efficiency. Natural Language Generation (NLG), a subset of NLP, is increasingly used for 
generating patient summaries, clinical reports, and tailored health communications, further advancing the 
usability of complex healthcare data (Croxford et al., 2025). NLP and ML algorithms are being integrated 
into real-time feedback systems, offering dynamic performance assessment and personalized coaching to 
accelerate competency development (Wartman & Combs, 2018). These innovations not only optimize the 
training pipeline but also ensure that clinical education keeps pace with the rapidly evolving demands of 
modern healthcare.  

Future Potential: Future NLP applications will include automated summarization of vast amounts of medical 
literature to assist clinicians and researchers, improved and more sophisticated medical conversational agents 
that can provide personalized health information and support, automated generation of clinical 
documentation, and the ability to analyze patient narratives and feedback to gain insights into their 
experiences and preferences. 

Quantitative Data: According to Cogent Infotech (2025), the adoption of NLP solutions in the healthcare and 
life sciences market is expected to increase from USD 2.2 billion in 2022 to USD 7.2 billion by 2027 at a 
CAGR of 27.1%. The contributors to this market growth include the increasing demand for predictive 
analytics to address significant health issues, the need to make electronic health record (EHR) data more 
usable, and the necessity to analyze and extract insights from narrative text. The socio-economic impact 
includes improved efficiency in processing clinical documentation, enhanced access to medical information, 
and potentially improved patient engagement through natural language interfaces. 

Open Challenges: Challenges include the complexity and variability of medical language, the presence of 
jargon, abbreviations, and inconsistencies in clinical notes, ensuring the accuracy and reliability of 
information extracted by NLP systems, addressing privacy concerns when processing sensitive patient 
narratives, and the need for domain expertise to train and validate NLP models for healthcare applications 
(Meskó & Topol, 2023). Over-dependence on these tools could potentially hinder the development of 
fundamental clinical skills and the ability to reason through complex cases autonomously (García-Torres et 
al., 2024). 

3.3. Devices & Wearables 
This category includes physical devices used by patients and healthcare providers, often with connectivity 
features to collect and transmit data. 

3.3.1. Wearable Devices 
Wearable devices are electronic technologies worn on the body that collect and transmit data about the 
user's health and activity. These range from fitness trackers and smartwatches to more sophisticated 
medical-grade sensors. 

Current Applications: Currently, wearable devices are widely used for tracking physical activity levels, 
monitoring heart rate, analyzing sleep patterns, and providing general wellness insights (Albites-Sanabria et 
al., 2024; Di Rienzo & Mukkamala, 2021; Lu et al., 2020). Some medical-grade wearables are used for 
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remote monitoring of specific conditions like atrial fibrillation or to support self-management of chronic 
conditions, e.g., for continuous glucose monitoring in diabetes management. 

Future Potential: Future wearable devices will offer continuous and passive monitoring of a much wider range 
of physiological parameters, including blood pressure, oxygen saturation, hydration levels, and even early 
indicators of infectious diseases. They will be seamlessly integrated with healthcare platforms, providing 
real-time data streams that enable proactive health interventions and personalized feedback. Advanced 
wearables could also incorporate diagnostic capabilities. 

Quantitative Data: The global wearable healthcare devices market size was valued at USD 39.9 billion in 2023 
and is expected to reach USD 114.8 billion by 2033, according to a research report published by Spherical 
Insights & Consulting (2024). The socio-economic impact includes empowering individuals to monitor their 
health and make informed lifestyle choices, facilitating early detection of potential health issues, and 
supporting remote patient monitoring programs, potentially reducing the need for frequent clinic visits. 

Open Challenges: Challenges include ensuring the accuracy and reliability of data collected by consumer-grade 
wearables, addressing data privacy and security concerns related to the continuous collection of sensitive 
personal health data, the need for regulatory frameworks for medical-grade wearables, ensuring usability and 
comfort for long-term wear, and integrating wearable data effectively into clinical workflows. 

3.3.2. Connected Medical Devices 
Connected medical devices are medical devices that are equipped with connectivity features, allowing them 
to transmit data to other devices, systems, or healthcare providers. This category overlaps with IoMT but 
focuses specifically on the medical devices themselves. 

Current Applications: Current applications include connected glucose meters that transmit readings to a 
smartphone or cloud platform, smart blood pressure cuffs, connected infusion pumps that can be remotely 
monitored, and smart inhalers that track medication usage. These devices facilitate remote monitoring and 
improve data collection for both patients and clinicians. 

Future Potential: Future connected medical devices will offer more advanced functionalities, including 
real-time adjustment of device settings based on patient data and AI analysis, predictive alerts for potential 
device malfunctions or patient deterioration, enhanced data sharing and interoperability between different 
devices and healthcare systems, and the development of closed-loop systems (e.g., automated insulin delivery 
systems). 

Quantitative Data: Connected Healthcare Devices Market was valued at over USD 55 billion in 2023 and is 
estimated to register a CAGR of over 17.5% between 2024 and 2032, driven by the increasing demand for 
remote monitoring and data-driven healthcare (Global Market Insights, 2024b). The socio-economic impact 
includes improved management of chronic conditions, reduced hospitalizations and emergency room visits, 
and enhanced efficiency in data collection and analysis for healthcare providers. 

Open Challenges: Key challenges include ensuring the cybersecurity of connected medical devices, which are 
vulnerable to hacking and data breaches, addressing regulatory complexities for connected devices, ensuring 
interoperability between devices from different manufacturers, managing the lifecycle and updates of 
connected devices, and establishing clear protocols for data ownership and access. 

3.4. Advanced Technologies 
This category encompasses emerging technologies with transformative potential across various sectors, 
including healthcare. 
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3.4.1. Blockchain 
Blockchain is a decentralized, distributed ledger technology that records transactions across many 
computers. This makes the data immutable, transparent, and secure, as the network must validate any 
changes. 

Current Applications: In healthcare, blockchain is being explored and piloted for securely storing and sharing 
patient data, managing supply chains for pharmaceuticals and medical devices to prevent counterfeiting, 
verifying the credentials of healthcare professionals, and facilitating secure and transparent clinical trial data 
management (Agbo et al., 2019; Engelhardt, 2017; Kuo et al., 2017). 

Future Potential: The future of blockchain in healthcare could involve truly interoperable and 
patient-controlled health records, where individuals have ownership and control over who can access their 
data. It could revolutionize healthcare data marketplaces, enabling secure and transparent sharing of 
aggregated data for research while preserving patient privacy. Blockchain could also streamline claims 
processing and billing. 

Quantitative Data: The blockchain in the healthcare market is still relatively nascent but is projected for 
significant growth as pilot projects demonstrate its value. The socio-economic impact could include 
enhanced data security and patient privacy, improved efficiency and transparency in healthcare operations, 
reduced fraud and errors in billing and supply chains, and accelerated medical research through secure data 
sharing. 

Open Challenges: Challenges include the scalability of blockchain networks to handle the massive volume of 
healthcare data, the energy consumption of some blockchain protocols, regulatory uncertainty surrounding 
the use of blockchain in healthcare, the need for standardization and interoperability between different 
blockchain platforms, and the technical complexity of implementing and managing blockchain solutions 
(Haque et al., 2021; McGhin et al., 2019). 

3.4.2. Augmented Reality (AR) 
AR is a technology that overlays digital information, images, or models onto the real world, typically viewed 
through a device like a smartphone, tablet, or AR glasses. 

Current Applications: In healthcare, AR is currently used for surgical planning and visualization, allowing 
surgeons to overlay patient imaging data onto the patient's body during procedures (Longo et al., 2024). It is 
also used in medical training and education, providing interactive anatomical models and simulations (Tang 
et al., 2020). AR can assist nurses in finding veins for injections. 

Future Potential: Future AR applications in healthcare include image-guided surgery with real-time, highly 
accurate overlays of critical anatomical structures and patient data, immersive and interactive anatomy 
learning experiences for medical students, remote expert guidance for complex procedures where a remote 
surgeon can provide real-time visual instructions, and AR-based rehabilitation programs that provide 
interactive exercises and feedback. 

Quantitative Data: AR in the healthcare market is a growing niche with increasing investment and 
development. The socio-economic impact includes improved surgical accuracy and outcomes, enhanced 
medical training and education, and potentially more engaging and effective rehabilitation programs. 

Open Challenges: Challenges include the cost of AR hardware and software, the need for high-precision 
tracking and registration to ensure accurate overlays during procedures, developing user-friendly interfaces 
for medical professionals, addressing potential distractions or cognitive load caused by AR overlays, and 
regulatory approval for AR applications used in clinical settings. 
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3.4.3. Virtual Reality (VR) 
VR is a technology that creates immersive, interactive simulated environments that users can experience 
through a VR headset. 

Current Applications: VR is currently used in healthcare for medical training simulations, allowing trainees to 
practice procedures in a realistic and risk-free environment. It is also used for pain management and therapy, 
providing distracting and immersive experiences that can reduce the perception of pain (Alvarado-Omenat 
et al., 2025; Giannelli et al., 2024). VR is used in exposure therapy for treating phobias, anxiety, and 
post-traumatic stress disorders (PTSD) and for patient education (Donnelly et al., 2021). 

Future Potential: Future VR applications will include highly realistic and haptic-feedback-enabled surgical 
training simulations, immersive rehabilitation programs that make exercises more engaging and effective, 
VR-based telemedicine consultations that provide a more immersive and personal interaction, and advanced 
VR environments for pain management and psychological therapies that are tailored to individual patient 
needs. 

Quantitative Data: A comprehensive market research report by Grand View Research (2024b) estimates the 
global VR in healthcare market size at USD 5.62 billion in 2024, with a projected growth at a CAGR) of 
30.3% from 2025 to 2030. The report highlights the increasing adoption of VR technologies in medical 
training, surgical simulation, patient care, rehabilitation, and therapy procedures. The growing demand for 
minimally invasive treatments and enhanced diagnostic tools has accelerated the use of virtual environments 
to improve procedural accuracy and patient outcomes. The socio-economic impact includes improved 
medical training outcomes, non-pharmacological approaches to pain management, and potentially more 
effective psychological therapies. 

Open Challenges: Challenges include the cost of VR hardware and software, potential side effects like motion 
cybersickness, the need for content tailored to specific medical applications, ensuring the realism and 
accuracy of simulations for training purposes, and integrating VR therapy effectively into clinical workflows. 

3.4.4. Robotics 
Robotics in healthcare involves the use of robots to perform various tasks, ranging from surgical procedures 
to logistics and patient care assistance. 

Current Applications: Surgical robots are widely used for minimally invasive procedures, offering increased 
precision, dexterity, and control for surgeons (Picozzi et al., 2024). Robots are also used for automated 
dispensing of medications in pharmacies, laboratory automation for handling samples and running tests, and 
for transporting materials and equipment within hospitals. 

Future Potential: Future healthcare robotics will see the development of more advanced and autonomous 
surgical robots capable of performing increasingly complex procedures. Robots will play a larger role in 
direct patient care, assisting with tasks like lifting and transferring patients, providing physical therapy 
guidance, and even offering companionship. Automated logistics and inventory management within 
hospitals will become more sophisticated. 

Quantitative Data: The global medical robotics market was valued at approximately USD 12.8 billion in 2024 
and is projected to grow at a CAGR of 16.6% from 2025 to 2034 (Global Market Insights, 2024a). Key 
market segments are surgical robots, currently market lead, and rehabilitation robots, which are expected to 
be the fastest-growing segment. The socio-economic impact includes improved surgical outcomes, reduced 
recovery times for patients undergoing robotic surgery, increased efficiency in laboratory and pharmacy 
operations, and potentially reduced physical strain on healthcare workers. 

Open Challenges: Challenges include the high cost of purchasing and maintaining medical robots, the need for 
specialized training for healthcare professionals to operate and interact with robots, addressing safety 
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concerns related to human-robot interaction in clinical settings, regulatory approval for new robotic 
applications, and the ethical considerations surrounding the increasing role of automation in patient care. 

3.4.5. 3D Printing 
3D printing, or additive manufacturing, is a process of creating three-dimensional solid objects from a digital 
model by adding material layer by layer. 

Current Applications: In healthcare, 3D printing is currently used to create patient-specific prosthetics and 
implants that are customized for a perfect fit. It is also used to produce anatomical models from patient scan 
data for surgical planning and training. 3D printing is used to create customized medical devices and surgical 
guides (McAnena, McClennen & Zheng, 2025). 

Future Potential: The future of 3D printing in healthcare includes the bioprinting of tissues and potentially 
even organs using living cells, revolutionizing transplantation and regenerative medicine. It will enable the 
on-demand printing of personalized medications with precise dosages and release profiles. 3D printing will 
also facilitate the creation of highly complex and customized medical devices and surgical tools at the point 
of care. 

Quantitative Data: The global healthcare 3D printing market was valued at USD 8.52 billion in 2023 and is 
projected to reach USD 27.29 billion by 2030, growing at a CAGR of 18.5% from 2024 to 2030 (Grand 
View Research, 2023). The socio-economic impact includes the availability of highly customized medical 
devices and implants, potentially lower costs for certain medical products compared to traditional 
manufacturing, and accelerating research in regenerative medicine and drug development. 

Open Challenges: Challenges include the regulatory approval process for 3D-printed medical devices and 
bio-printed tissues, ensuring the quality and safety of 3D-printed materials for medical use, the cost and 
accessibility of 3D printing technology in healthcare settings, the need for specialized skills to design and 
print medical products, and the ethical considerations surrounding bioprinting. 

3.4.6. Digital Twins 
A digital twin is a virtual replica of a physical object, process, or system that is continuously updated with 
real-time data from its physical counterpart. This allows for simulation, analysis, and optimization. 

Current Applications: In healthcare, digital twins are being explored to create virtual replicas of organs or 
physiological systems to simulate disease progression and treatment responses (Viceconti et al., 2024). They 
are also used for optimizing hospital workflows, managing resources, and simulating the impact of changes 
to the healthcare system. 

Future Potential: Future applications of digital twins in healthcare include creating patient-specific digital twins 
that integrate data from various sources (EHRs, wearables, genomics) to simulate the potential outcomes of 
different treatment options, enabling highly personalized medicine. Digital twins of hospitals and healthcare 
networks could optimize operations, predict bottlenecks, and improve disaster preparedness. They could 
also revolutionize clinical trial design by simulating patient responses. 

Quantitative Data: The digital twin market in healthcare is still in its early stages but is expected to grow 
significantly as the technology matures and its benefits are demonstrated. The socio-economic impact could 
include more personalized and effective treatments, improved efficiency and cost savings in healthcare 
operations, and accelerated medical research and drug development through simulation. 

Open Challenges: Challenges include the complexity of creating accurate and realistic digital twins of biological 
systems, the need for massive amounts of real-time data to keep digital twins updated, ensuring the 
interoperability of data sources, the computational resources required for running complex simulations, and 
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addressing data privacy and security concerns related to creating and using detailed digital replicas of 
individuals. 

3.5. Advanced Computing 
This category highlights the role of high-performance computing and the emerging field of quantum 
computing in addressing complex healthcare challenges. 

3.5.1. High-Performance Computing (HPC) 

HPC refers to the use of supercomputers and parallel processing techniques to solve complex 
computational problems that are too large or require too much time for standard computers. 

Current Applications: In healthcare, HPC is currently essential for processing and analyzing large genomic 
datasets to identify genetic variations and understand disease mechanisms. It is used for molecular 
simulations in drug discovery and development to predict how potential drug candidates will interact with 
biological targets. HPC is also used for complex medical imaging processing and analysis (Li et al., 2024). 

Future Potential: Future applications of HPC in healthcare will involve even more sophisticated genomic 
analysis for personalized medicine and disease prediction, accelerating the drug discovery and development 
process through large-scale simulations and virtual screening, enabling more advanced medical imaging 
analysis and reconstruction, and supporting large-scale epidemiological studies and public health modeling. 

Quantitative Data: The use of HPC in healthcare and life sciences is a growing area driven by the increasing 
volume and complexity of biological and medical data. The socio-economic impact includes accelerating 
breakthroughs in genomics and personalized medicine, speeding up the development of new drugs and 
therapies, and improving our understanding of complex diseases. 

Open Challenges: Challenges include the high cost of acquiring and maintaining HPC infrastructure, the need 
for specialized expertise to utilize HPC effectively for healthcare applications, managing and transferring 
large datasets to and from HPC systems, and ensuring the security and privacy of sensitive data processed 
on these platforms. 

3.5.2. Quantum Computing 
Quantum computing is a new paradigm of computing that uses the principles of quantum mechanics to 
perform calculations. Quantum computers have the potential to solve certain types of problems that are 
intractable for even the most powerful classical supercomputers. 

Current Applications: Quantum computing in healthcare is currently in the research and development phase. 
Researchers are exploring its potential for drug discovery by simulating molecular interactions with 
unprecedented accuracy, optimizing complex treatment plans, and advancing medical imaging techniques 
(Flöther, 2023). 

Future Potential: Future quantum computing applications in healthcare could revolutionize drug discovery by 
enabling the simulation of highly complex biological systems and the design of entirely new molecules. It 
could lead to the development of highly personalized treatment plans that account for an individual's unique 
genetic makeup and disease characteristics. Quantum computing could also enhance the capabilities of AI in 
healthcare by enabling more complex and powerful algorithms. 

Quantitative Data: The quantum computing market in healthcare is currently very small, representing 
primarily research and development investments. However, it has the potential for significant future growth 
as the technology matures. The socio-economic impact is potentially revolutionary, leading to the discovery 
of new cures and therapies, highly personalized medicine, and unprecedented advancements in our 
understanding of biological systems. 
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Open Challenges: Significant challenges include the immaturity of quantum computing hardware and software, 
the difficulty in building and maintaining stable quantum systems, the need for specialized algorithms 
tailored for quantum computers, the high cost of quantum computing resources, and the need to train a 
workforce with the necessary skills in quantum mechanics and computer science. 

3.6. Digital Therapeutics & Interventions 
This category focuses on software-based interventions and programs designed to treat or manage medical 
conditions and support patient care. 

3.6.1. Digital Therapeutics (DTx) 

DTx are software programs that deliver evidence-based therapeutic interventions to prevent, manage, or 
treat a medical disorder or disease. Unlike general health and wellness apps, DTx are clinically validated, 
often prescribed by healthcare professionals, and are regulated as medical devices in many regions. 

Current Applications: Current DTx applications include programs for managing chronic conditions like 
diabetes (e.g., providing behavioral support and glucose monitoring insights), treating mental health 
disorders such as anxiety and depression (e.g., delivering cognitive behavioral therapy), and managing 
substance abuse disorders (Chengyu, Xueyan & Ying, 2024; Fassbender et al., 2024). 

Future Potential: Future DTx will be more integrated into clinical workflows, with seamless data exchange 
between the DTx program, patient, and healthcare provider. They will offer more personalized and adaptive 
therapeutic interventions based on real-time patient data and AI analysis. The range of medical conditions 
addressed by DTx is expected to expand significantly, including neurological disorders, cardiovascular 
diseases, and chronic pain. 

Quantitative Data: Fortune Business Insights (2025b) projects the market of DTx to expand from USD 8.28 
billion in 2024 to USD 43.88 billion by 2032, reflecting a CAGR of 23.2% during the forecast period, as 
regulatory frameworks mature and adoption increases. The socio-economic impact includes providing 
accessible and scalable therapeutic options, potentially reducing the need for traditional treatments and 
hospitalizations, and empowering patients to manage their conditions actively. 

Open Challenges: Challenges include the need for rigorous clinical validation and regulatory approval for DTx 
products, establishing clear reimbursement pathways, ensuring equitable access to DTx for all patients, 
integrating DTx effectively into existing healthcare workflows, and addressing concerns about patient 
engagement and adherence to digital interventions. 

3.6.2. Digital Care Programs 
Digital care programs are comprehensive digital platforms and services designed to support patient care and 
management, often for specific conditions or patient populations. They can integrate various digital 
technologies to provide a holistic care experience. 

Current Applications: Current digital care programs include remote patient monitoring programs for chronic 
diseases that integrate data from connected devices and provide educational content and support. They also 
include virtual rehabilitation programs, digital platforms for care coordination among multiple providers, 
and patient engagement platforms that provide personalized information and communication tools (Jansen 
et al., 2025). 

Future Potential: Future digital care programs will represent highly integrated and personalized care pathways 
that leverage the full spectrum of digital technologies. They will be powered by AI for personalized care 
coordination, predictive risk assessment, and automated patient support. These programs will enable remote 
management of increasingly complex conditions and provide a more seamless and patient-centric healthcare 
experience. 
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Quantitative Data: The market for digital care programs is expanding as healthcare providers and payers seek 
innovative ways to manage patient populations and improve outcomes. The socio-economic impact includes 
improved care coordination, better management of chronic conditions, reduced healthcare costs through 
preventative care and reduced hospitalizations, and enhanced patient engagement and satisfaction. 

Open Challenges: Challenges include ensuring the interoperability of different digital tools and platforms 
within a program, integrating digital care programs effectively into existing clinical workflows, addressing 
data privacy and security concerns when aggregating data from multiple sources, ensuring equitable access 
to these programs, and demonstrating their long-term effectiveness and cost-effectiveness. 

4. The Transformative Impact of AI on Healthcare: Preempting 
Illness, System Management, and Community Care 

Amid the 4th Industrial Revolution, science and technology are reshaping healthcare and patient 
management in truly remarkable ways. These advancements promise not only improved patient care but also 
cost savings through early diagnosis and treatment options. They address talent shortages, ensure secure and 
seamless access to patient data, and facilitate treatments in more comfortable outpatient settings. To 
capitalize on these medical breakthroughs, healthcare organizations must identify inefficiencies and be 
willing to experiment with novel technologies. It is crucial to include all stakeholders, especially patients, in 
this process to ensure their needs and inputs are considered. We are witnessing a dramatic transformation in 
patient care management thanks to innovations like hyper-personalized medicine, 24/7 support bots, and 
systems that proactively alert physicians to potential issues. Advancements in AI, nanotechnology, 
biosensors, and digital health monitoring have significantly enhanced the capability to predict, prevent, and 
preempt illnesses before they manifest. The shift from reactive to proactive medicine is being driven by 
technologies that enable continuous health monitoring, early diagnosis, and personalized treatment plans. 

4.1 AI’s Dependence on Health Data Collection, Availability, and Usability: the 
role of blockchain technologies 

Data-driven strategies will likely dominate healthcare provider decision-making in the coming decade. The 
aggregation and application of data—encompassing patient information, IT infrastructure metrics, facility 
management data, and other diverse sources—will exert a significant influence on strategic discussions and 
organizational priorities. Similarly, the efficacy of AI in healthcare is contingent upon the availability of 
high-quality, comprehensive, and interoperable health data. AI models necessitate substantial datasets for 
training algorithms designed for disease prediction, treatment optimization, and patient risk stratification 
(Chen & Goldman, 2023). Nevertheless, challenges pertaining to data standardization, security protocols, 
and ethical governance persist. 

The integration of blockchain technologies in healthcare is fundamentally altering the paradigms of medical 
data storage, sharing, and utilization. By providing a secure, decentralized, and immutable framework for 
managing electronic health records (EHRs), blockchain facilitates enhanced efficiency and streamlining of 
healthcare services. This technological advancement bolsters data reliability, interoperability, and security, 
resulting in improved patient care outcomes, cost reductions, and expanded access to outpatient services. As 
healthcare systems increasingly transition toward digital and cloud-based infrastructures, blockchain ensures 
data integrity, mitigates administrative inefficiencies, and strengthens the dynamics of patient-provider 
interactions (Agbo, Mahmoud& Eklund, 2019). 

A salient contribution of blockchain technology in healthcare lies in its capacity to enable real-time, secure, 
and transparent data exchange among providers. Traditional EHR systems are often characterized by data 
silos, wherein information is stored in disparate and non-interoperable systems, thereby impeding healthcare 
professionals' access to a holistic view of a patient's medical history (Engelhardt, 2017). Blockchain 
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technology addresses this limitation by establishing a decentralized ledger that permits authorized 
stakeholders—including physicians, hospitals, laboratories, and insurers—to securely access and update 
records without compromising data integrity or patient privacy. Through cryptographic hashing and smart 
contracts, blockchain ensures that only authorized personnel can modify patient data, thereby minimizing 
errors, administrative delays, and redundancies in medical testing (Yue et al., 2016). 

Another advantage of blockchain technology lies in its capacity to enhance the security and reliability of 
cloud-based healthcare services. With the increasing reliance on cloud storage for patient records, medical 
imaging, and genomic data, concerns regarding cybersecurity breaches, data manipulation, and unauthorized 
access have become increasingly salient (Zhang et al., 2018). Blockchain mitigates these risks through the 
encryption and decentralization of patient information, thereby precluding unilateral control over data by 
any single entity. This immutable ledger technology not only prevents fraudulent alterations but also fosters 
trust among healthcare providers and patients. Furthermore, blockchain-based solutions facilitate automated 
data reconciliation, enabling healthcare systems to maintain real-time, tamper-proof patient records, which 
significantly reduces medical errors and enhances the accuracy of diagnoses and treatment regimens (Kuo, 
Kim& Ohno-Machado, 2017). 

From an economic standpoint, blockchain contributes to cost containment and enhanced operational 
efficiency within healthcare systems. Administrative processes, including insurance claims, billing 
procedures, and provider credentialing, are often characterized by complexity and protracted timelines. By 
leveraging blockchain-enabled smart contracts, healthcare organizations can automate these processes, 
thereby significantly reducing administrative overhead, eliminating fraudulent activities, and expediting 
insurance reimbursements (McGhin et al., 2019). This automation not only curtails operational expenditures 
but also enables healthcare professionals to allocate a greater proportion of their time to patient care rather 
than administrative tasks. 

Blockchain further facilitates a transition towards outpatient and telemedicine services, thereby promoting a 
more cost-effective and accessible healthcare delivery model. Through secure and transparent data exchange 
mechanisms, providers can confidently offer remote consultations, AI-driven diagnostics, and personalized 
treatment plans while ensuring patient confidentiality (Roehrs et al., 2019). Patients with chronic conditions, 
mobility impairments, or those residing in remote geographic areas benefit from continuous, high-quality 
care without necessitating frequent in-person consultations. Blockchain-powered telemedicine platforms 
also ensure seamless coordination between specialists and general practitioners, thereby facilitating more 
efficient case management and improved health outcomes. 

Moreover, blockchain technology facilitates advancements in precision medicine and genomic research by 
providing a secure and traceable framework for the sharing of genetic and biomedical data among 
researchers and healthcare institutions (Haque et al., 2021). Personalized medicine relies on the integration 
of patient-specific data, encompassing genomic sequencing, lifestyle factors, and medical history, to tailor 
individualized treatments. Through the application of blockchain, researchers can access large, anonymized 
datasets while upholding patient privacy and adhering to regulatory compliance standards, thereby 
accelerating the development of targeted therapies and more effective medical interventions (Zhang, 
Schmidt & White, 2020). 

Despite its transformative potential, widespread adoption of blockchain in healthcare still faces regulatory 
and technological challenges. Issues such as scalability, standardization of protocols, and compliance with 
data protection laws (e.g., GDPR and HIPAA) must be addressed to fully realize its benefits (Esposito et al., 
2018; Atella, Ganna & Lombardo, 2025, in this Special Issue). However, as governments, healthcare 
providers, and technology companies continue to invest in blockchain research and pilot projects, its 
integration into mainstream healthcare services is becoming increasingly viable. 
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In conclusion, blockchain technology presents a groundbreaking opportunity to enhance patient health 
through secure, efficient, and interoperable healthcare services. By providing reliable cloud-based 
infrastructures, enabling seamless record-sharing, reducing administrative costs, and expanding outpatient 
care options, blockchain is revolutionizing the way medical data is managed and healthcare is delivered. As 
the industry moves towards data-driven, patient-centric models, blockchain is poised to play an essential role 
in ensuring that healthcare systems remain resilient, cost-effective, and patient-focused. 

4.2 How AI is pervading the world of incoming new technologies 
AI is becoming an integral component of emerging technologies, shaping advancements across multiple 
domains, including healthcare, finance, transportation, and manufacturing. Its ability to process vast 
amounts of data, recognize patterns, and automate complex tasks has positioned it as a foundational 
element in the development of autonomous systems, predictive analytics, and human-machine collaboration 
(Russell & Norvig, 2021). In healthcare, AI enhances diagnostic accuracy, optimizes treatment plans, and 
streamlines administrative processes (Topol, 2019a,b; Brynjolfsson & McAfee, 2017). This is occurring in 
several new branches of medical innovation. Below, we describe some interesting breakthroughs. 

Nanotechnology and Nanobots. Nanotechnology has emerged as a breakthrough field in medicine, 
offering solutions that range from targeted drug delivery to cellular repair and tissue regeneration. 
Nanobots, which are microscopic robotic systems, can be programmed to navigate through the bloodstream 
and detect biochemical markers associated with early-stage diseases such as cancer, cardiovascular disorders, 
and neurodegenerative conditions (Saini et al., 2021). Some researchers have developed nanobots coated 
with platelet and red blood cell membranes, enabling them to neutralize toxins and bacterial infections in the 
bloodstream more efficiently than traditional antibiotics (Han et al., 2022). Within this technology, AI 
facilitates targeted drug delivery, enabling nanobots to navigate the bloodstream and selectively attack 
malignant cells, improving cancer treatment while minimizing side effects (Santos et al., 2020). One of the 
most promising applications of nanomedicine is its ability to target malignant tumors at the cellular level. 
Unlike conventional chemotherapy, which affects both cancerous and healthy cells, nanobots can deliver 
highly localized treatments, reducing side effects and improving patient outcomes (Santos et al., 2020). 
Moreover, researchers have designed self-propelled nanobots that can travel through the cerebrospinal fluid, 
offering potential treatments for brain disorders and neurodegenerative diseases such as Alzheimer’s and 
Parkinson’s (Saniotis, et al., 2018; Krsek & Baticic, 2024). 

Biosensors and Digital Tattoos. Biosensors represent another revolutionary advancement in preventive 
medicine. These wearable and implantable devices allow for continuous monitoring of vital physiological 
parameters, alerting patients and physicians in real time about potential health risks. Biosensors integrated 
into smartwatches, patches, and digital tattoos are capable of detecting blood glucose levels, cardiac rhythms, 
hydration status, and oxygen saturation (Lopez & Sun, 2022; Trung & Lee, 2016). Biosensors and digital 
tattoos powered by AI provide continuous health monitoring, detecting early signs of chronic conditions 
and optimizing disease management through real-time data analysis. A breakthrough in biosensor 
technology has been the development of graphene-based wearable sensors, which can detect specific cancer 
biomarkers through sweat analysis. Recent research has shown promising developments in non-invasive 
detection methods for early-stage gastric cancer. For instance, a study introduced an integrated AI-enabled 
system using One Class Twin Cross Learning (OCT-X) for early gastric cancer detection, achieving a 
diagnostic accuracy of 99.70% (Tang et al., 2024). Another research utilized deep learning on non-contrast 
CT scans, achieving a sensitivity of 85.0% and specificity of 92.6% for detecting gastric tumors (Liu et al., 
2023). AI-powered predictive analytics further enhances the effectiveness of biosensors by processing vast 
datasets to detect patterns that indicate pre-disease conditions. For example, AI algorithms used in 
continuous glucose monitoring (CGM) devices can predict hypoglycemic events in diabetic patients up to 
three hours before they occur, allowing for timely intervention and improved glucose control (Sharma et al., 
2022). 
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Haptic Technology and Robotic Surgery. AI-powered robotic surgical systems have enhanced precision, 
minimized invasiveness, and shortened recovery times. One of the most widely adopted technologies is the 
Da Vinci Surgical System, which allows robot-assisted laparoscopic procedures, reducing surgical 
complications and hospital stays (Liu, Wu et al., 2024). Recent advancements in haptic feedback technology 
enable surgeons to perform remote surgeries with an enhanced sense of touch, even when operating at a 
distance. Researchers have developed haptic glove systems that provide real-time force feedback, improving 
tactile sensitivity in robotic-assisted surgeries. This innovation has the potential to expand surgical expertise 
to remote and underserved regions, addressing global disparities in healthcare access. AI-driven haptic 
technology and robotic surgery improve surgical precision and enable remote procedures, expanding access 
to specialized care and reducing post-operative complications (Liu, Wu et al., 2024; Tozsin et al., 2024). 

AI in Mental Health and Virtual Assistants. In mental health, AI-powered virtual assistants support 
cognitive behavioral therapy and provide real-time psychological assessments, increasing accessibility to 
mental health services and alleviating pressure on healthcare professionals. AI-powered chatbots and virtual 
mental health assistants are now widely used in telepsychiatry and cognitive behavioral therapy (CBT) 
(Vaidyam et al., 2019). AI-driven platforms such as Woebot and Wysa provide psychological support, 
monitor mental health trends, and offer personalized cognitive therapy exercises (Fulmer et al., 2018; Inkster 
et al., 2018). Studies show that these digital interventions can reduce symptoms of depression and anxiety 
while reducing the burden on human mental health professionals (Ravindran et al., 2021). 

AI in Drug Development and Clinical Trial Optimization. Artificial Intelligence (AI) is transforming 
drug discovery and the evaluation of pharmaceutical safety by significantly enhancing the ability to simulate 
and predict drug interactions. Traditional drug development relies on time-intensive and costly clinical trials, 
often requiring six to eight years of testing and investments reaching hundreds of millions or even billions of 
dollars (Mak & Pichika, 2019). Moreover, nearly 80% of clinical trials fail to meet their enrollment targets, 
delaying the approval of new treatments and increasing financial risks (Huang et al., 2020). AI-driven 
approaches are now streamlining drug development, reducing the reliance on experimental assumptions, and 
expediting the research process while improving cost efficiency (Liu, Lu et al., 2024). 

A notable example of AI’s impact on pharmaceutical research is Decagon, an AI-based system developed by 
Stanford researchers to analyze protein-drug interactions. This system evaluates how approximately 5,000 
existing pharmaceuticals interact with proteins in the human body, allowing researchers to identify potential 
side effects and adverse reactions with far greater speed and accuracy than traditional methods (Zitnik et al., 
2018). By leveraging deep learning algorithms and vast biological datasets, AI tools such as Decagon offer a 
safer and more efficient alternative to animal testing and human trials, minimizing ethical concerns while 
improving predictive capabilities. 

Beyond its applications in drug safety and efficacy analysis, AI is also revolutionizing patient recruitment for 
clinical trials. One of the most persistent challenges in clinical research is identifying and enrolling suitable 
participants, a process that is often hampered by inefficiencies in patient screening and eligibility matching. 
AI-driven systems are now being utilized to analyze electronic health records (EHRs) and genomic data, 
ensuring that patients who meet the specific criteria for a trial are identified in a timely manner (Topol, 
2019a,b). By automating this process, AI enhances trial efficiency, increases patient participation, and 
ensures that individuals are matched to studies from which they are most likely to benefit. 

The application of AI in drug research and clinical trial management marks a significant shift toward 
data-driven, precision medicine. By accelerating drug discovery, enhancing patient safety, and optimizing 
clinical trial workflows, AI is paving the way for a more efficient, cost-effective, and patient-centered 
pharmaceutical industry. As AI models continue to evolve, their role in drug repurposing, personalized 
treatment strategies, and the early identification of adverse drug reactions will become increasingly integral 
to the future of medical research. 
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4.3  AI’s Role in Facilitating the Transition from Inpatient to Outpatient Care 
AI is playing an increasingly pivotal role in transforming healthcare delivery by facilitating the transition of 
patients from inpatient to outpatient settings. As healthcare systems strive to enhance efficiency, reduce 
costs, and improve patient outcomes, AI-driven technologies are being leveraged to optimize post-discharge 
monitoring, personalized treatment plans, and remote patient management. These advancements support 
continuity of care, minimize hospital readmissions, and enable a more sustainable healthcare model focused 
on preventive and community-based care (Davenport & Kalakota, 2019). 

One of the key areas where AI is making a substantial impact is in predictive analytics and early warning 
systems. AI algorithms analyze vast amounts of patient data to identify individuals at risk of complications, 
readmissions, or adverse events following hospital discharge. Machine learning models, trained on electronic 
health records (EHRs) and real-time physiological data, can detect subtle patterns indicative of deteriorating 
health, allowing clinicians to intervene proactively and prevent avoidable hospitalizations (Shameer et al., 
2017). This predictive capability is particularly beneficial for managing patients with chronic diseases such as 
heart failure, chronic obstructive pulmonary disease (COPD), and diabetes, where continuous monitoring 
and timely interventions significantly reduce the likelihood of acute exacerbations (Kwon et al., 2020). 

AI-powered remote patient monitoring (RPM) systems are revolutionizing outpatient care by enabling 
real-time tracking of vital signs, medication adherence, and rehabilitation progress. Wearable biosensors, 
combined with AI-driven analytics, allow healthcare providers to monitor blood pressure, glucose levels, 
oxygen saturation, and cardiac function without requiring patients to remain in a hospital setting 
(Krittanawong et al., 2019). These devices facilitate the early detection of potential complications, prompting 
timely medical interventions that prevent rehospitalization and enhance patient well-being. Additionally, 
AI-based virtual nursing assistants and chatbots, such as those integrated into mobile health applications, 
provide patients with personalized health guidance, medication reminders, and symptom assessments, 
fostering greater self-management and reducing dependence on in-person clinical visits (Bini, 2018). 

The implementation of AI-driven telemedicine platforms has further streamlined the transition from 
inpatient to outpatient care by ensuring continuous access to medical professionals. AI-enhanced virtual 
consultations enable specialists, general practitioners, and allied healthcare professionals to conduct 
follow-ups, adjust treatment plans, and address patient concerns remotely, reducing the need for unnecessary 
hospital visits (Anghel et al. 2025; Shaik et al., 2025). This approach has proven particularly valuable in rural 
and underserved areas where access to healthcare services is limited. Telehealth solutions integrated with 
NLP and computer vision can assess patient speech, facial expressions, and physiological cues during virtual 
visits, providing clinicians with additional insights into a patient’s condition (Esteva et al., 2021). 

AI also plays a crucial role in optimizing hospital discharge planning and care coordination. Machine 
learning models can predict the most appropriate discharge pathways based on patient-specific factors, 
ensuring a seamless transition to home-based or rehabilitation care (Sendak et al., 2020). AI-powered 
discharge management systems facilitate better communication between hospitals, primary care providers, 
and home healthcare teams, reducing delays in follow-up appointments and ensuring that patients receive 
the necessary post-discharge support. These systems enhance interdisciplinary collaboration by integrating 
automated alerts, shared medical records, and AI-driven decision-support tools, thereby reducing 
administrative burden and improving continuity of care. 

From an economic standpoint, the integration of AI in the transition from inpatient to outpatient care has 
significant cost-saving potential. Prolonged hospital stays contribute substantially to healthcare expenditures, 
and reducing the length of hospitalization through AI-guided outpatient management strategies alleviates 
financial strain on both healthcare systems and patients. Studies indicate that AI-enhanced remote 
monitoring and telehealth programs reduce hospital readmission rates by up to 30%, underscoring the 
financial and clinical benefits of leveraging AI-driven interventions (Madrid-Cagigal et al., 2025). 
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Despite its transformative potential, the widespread adoption of AI in facilitating inpatient-to-outpatient 
transitions faces challenges related to data privacy, algorithmic bias, and technology accessibility (see Atella, 
Ganna & Lombardo, 2025, in this Special Issue). Ensuring that AI models are trained on diverse and 
representative datasets is essential to prevent disparities in care delivery, particularly for marginalized 
populations. Moreover, the successful implementation of AI-driven solutions requires investment in digital 
literacy, clinician training, and regulatory frameworks that prioritize patient safety, transparency, and ethical 
AI deployment (Morley, Machado et al., 2020). 

As AI continues to advance, its role in reshaping healthcare delivery, enhancing outpatient care, and 
reducing unnecessary hospitalizations will become increasingly pronounced. By leveraging predictive 
analytics, remote monitoring, telemedicine, and AI-driven care coordination, healthcare systems can 
transition towards a more patient-centered, efficient, and cost-effective model, ultimately improving 
population health and quality of life. 

4.4 AI’s Role in Healthcare System Management and Human Resource 
Optimization 

Beyond direct patient care, the integration of AI in healthcare system management and human resource 
optimization is reshaping the workforce dynamics, particularly in workforce allocation, hospital logistics, and 
administrative efficiency, requiring new competencies and skills while simultaneously posing significant 
challenges for policymakers and healthcare administrators. As AI technologies enhance efficiency, diagnostic 
accuracy, and operational workflows, the demand for AI-literate healthcare professionals is increasing. To 
ensure that healthcare systems remain adaptive, sustainable, and capable of leveraging AI’s full potential, 
decision-makers must proactively plan for workforce transformation, invest in skill development, and design 
policies that support AI integration while maintaining high standards of patient care (Jiang et al., 2017). 

AI-powered solutions are streamlining clinical decision-making, predictive analytics, and automated 
administrative processes, reducing the burden of routine tasks on healthcare professionals. In diagnostics, AI 
algorithms are demonstrating remarkable accuracy in medical imaging, detecting anomalies in radiology, 
dermatology, and pathology with sensitivity levels comparable to or exceeding human specialists (Topol, 
2019a,b). The ability of AI-driven systems to process vast amounts of clinical data in real-time is enhancing 
early disease detection, risk stratification, and personalized treatment planning (Rajpurkar et al., 2018). This 
transformation necessitates that clinicians, nurses, and allied health professionals develop competencies in 
AI interpretation, data analysis, and digital literacy to ensure that AI-powered recommendations are 
effectively integrated into clinical workflows (Paranjape et al., 2019). 

Beyond clinical applications, AI is significantly improving hospital resource management, workforce 
allocation, and operational efficiency. AI-driven predictive staffing models are optimizing workforce 
distribution, ensuring that hospitals allocate human resources efficiently based on patient flow trends and 
demand forecasts (Davenport & Kalakota, 2019). In emergency departments, machine learning algorithms 
analyze historical admission patterns to anticipate patient influxes, allowing administrators to allocate 
personnel and resources proactively (El Ariss et al., 2024; Vural et al., 2025). AI-powered scheduling systems 
are reducing physician burnout by balancing workloads and automating shift assignments, creating more 
equitable work environments while preserving staff well-being (Uhde et al., 2020; Choudhry, 2022). 

One of the most profound shifts driven by AI is in medical education and training. The traditional methods 
of training healthcare professionals are evolving to accommodate AI-based simulations, augmented reality 
(AR), and virtual reality (VR) applications, which provide interactive and immersive learning experiences 
(Tang et al., 2020). AI-powered simulated patient cases allow medical trainees to practice complex clinical 
decision-making scenarios, refining their diagnostic skills and procedural competencies in a risk-free 
environment (Tang et al., 2017). As AI continues to influence medical curricula, interdisciplinary education 
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that integrates healthcare, computer science, and bioinformatics is becoming essential for future healthcare 
professionals (Tozsin et al., 2024). 

In workforce planning, AI is also playing a key role in credentialing, recruitment, and professional 
development. AI-driven platforms analyze candidate profiles, clinical expertise, and historical performance 
data to match healthcare professionals with positions that align with their skills and career trajectories 
(Nguyen et al., 2021). Additionally, AI-powered learning management systems track individual competency 
development, offering personalized training pathways and upskilling opportunities based on evolving 
healthcare demands. This shift underscores the need for healthcare institutions to foster lifelong learning 
environments where practitioners can continuously refine their expertise in alignment with technological 
advancements (Meskó et al., 2018). 

The integration of AI in healthcare management is also prompting new ethical, legal, and regulatory 
considerations. Policymakers must establish guidelines for AI-driven decision support systems, ensuring that 
clinical accountability, data security, and patient safety remain paramount. Ethical concerns regarding AI 
bias, algorithmic transparency, and equitable access to AI-driven care necessitate ongoing regulatory 
oversight and governance frameworks (Morley, Machado et al., 2020). Additionally, healthcare leaders must 
navigate the transition to AI-augmented care models by fostering interdisciplinary collaboration between 
healthcare professionals, AI developers, and policymakers to create systems that enhance, rather than 
replace, human expertise (Char et al., 2020). 

Preparing for this AI-driven transformation requires a multifaceted policy approach. Healthcare 
decision-makers must invest in workforce reskilling programs, AI-centric education, and organizational 
change management strategies to mitigate resistance and promote AI adoption. Strengthening public-private 
partnerships between academic institutions, healthcare providers, and technology firms can facilitate AI 
innovation, research, and skill development at scale. Governments and regulatory bodies must also adapt 
healthcare reimbursement models to recognize AI-assisted medical procedures and digital health 
interventions, ensuring that these technologies are sustainably integrated into routine care (Jiang et al., 2021). 

As AI continues to redefine the healthcare landscape, the role of human expertise remains indispensable. 
The successful adoption of AI in healthcare hinges not only on technological progress but also on strategic 
workforce planning, comprehensive policy frameworks, and a culture of continuous learning. By aligning AI 
capabilities with healthcare workforce development, decision-makers can ensure that AI serves as an enabler 
of efficiency, accuracy, and accessibility rather than a disruptive force, ultimately improving patient outcomes 
and system-wide resilience. 

AI is revolutionizing disease prevention, healthcare system efficiency, and community-based care models. 
From nanobots and biosensors to robotic surgery and telemedicine, AI-powered solutions are reshaping 
patient care, workforce management, and cost efficiency. However, the success of these technologies 
depends on ethical governance, data standardization, and equitable access. As AI continues to evolve, it has 
the potential to transform healthcare into a predictive, preventive, and patient-centric system. As AI 
continues to evolve, its ethical, regulatory, and socio-economic implications require careful consideration to 
ensure responsible and beneficial deployment (Floridi et al., 2018). 

5. Application Areas: Transforming Healthcare Delivery and 
Patient Experience. 

5.1 Telemedicine: Expanding Access to Care and Remote Monitoring. 
Telemedicine utilizes telecommunications and information technology to provide clinical healthcare from a 
distance, and it emerged as an essential tool during the COVID-19 pandemic (Omboni et al., 2022). New 
technologies are significantly expanding the capabilities and reach of telemedicine, whose use is comparable 
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to in-person care across a variety of outcomes and clinical areas (Ezeamii et al., 2024). LLMs can enhance 
doctor-patient interactions during virtual consultations, offering real-time translation and summarizing key 
information. AI-powered remote patient monitoring systems, often integrated with wearable devices, allow 
for continuous tracking of physiological data, enabling early detection of health issues and personalized 
interventions. VR and AR can further augment telemedicine by enabling doctors to conduct sensory tests on 
patients with motor impairments during virtual visits and by projecting medical images onto a patient's body 
during video consultations, enhancing visual communication and remote diagnosis. Predictive analytics can 
identify patients who would benefit most from remote monitoring and predict potential health risks, 
allowing for proactive care delivery. HPC and big data infrastructure support the large-scale data 
transmission and analysis required for effective remote monitoring and telehealth services, ensuring secure 
and timely communication. Robotics also plays a role, with the development of telerobotics enabling remote 
surgeries and consultations, potentially increasing access to specialized treatments in underserved areas 
(Evans, Medina & Dwyer, 2018). 

Telemedicine, empowered by these technologies, directly impacts the social dimension of the 
biopsychosocial model by breaking down geographical barriers and increasing access to healthcare services, 
especially for individuals in remote or underserved communities. Remote monitoring can also improve 
psychological well-being by providing patients with a sense of security and continuous support while also 
enabling early intervention for biological issues (Tan et al., 2024). Furthermore, telemedicine can enhance 
activity and participation for individuals with mobility limitations by allowing them to receive care and 
monitoring from the comfort of their homes. Commercial solutions in this area include platforms like 
Teladoc Health and Amwell, which offer virtual consultations, and companies like Biofourmis and Current 
Health (acquired by Best Buy Health), which provide AI-powered remote monitoring solutions. 

5.2 Self-Assessment and Self-Management Tools: Empowering Patient 
Agency. 

New technologies are providing patients with increasingly sophisticated tools for self-assessment and 
self-management of their health (Deniz-Garcia et al., 2023; Fassbender et al., 2024). LLMs can power 
chatbots that answer patient questions about symptoms, medications, and health conditions, improving 
health literacy and empowering individuals to take a more active role in their care. AI-driven mobile apps 
can analyze user-inputted symptoms and provide preliminary assessments, guiding individuals on when to 
seek professional help. VR and AR applications can educate patients about their conditions and treatment 
plans through immersive and interactive experiences, improving understanding and adherence. Predictive 
analytics can identify individuals at high risk for certain conditions, prompting them to adopt preventive 
behaviors and engage in self-management strategies. Wearable devices, integrated with big data analytics 
platforms, continuously collect health data, providing individuals with personalized insights and feedback to 
support self-management of chronic conditions like diabetes and hypertension. 

These tools primarily impact the psychological dimension by increasing patients' knowledge, confidence, and 
sense of control over their health. Improved health literacy, facilitated by LLM-powered explanations and 
VR/AR-based education, can reduce anxiety and empower patients to make informed decisions about their 
care. By providing tools for remote monitoring and self-tracking, technology can also enhance activity and 
participation by enabling individuals to manage their conditions while maintaining their daily routines. 
Commercial examples include health and wellness apps like MyFitnessPal and Headspace, AI-powered 
symptom checkers like Ada Health, and wearable devices from companies like Fitbit and Apple. 

5.3 Preventive Medicine: Utilizing Technology for Early Detection and Risk 
Reduction. 

Technology is playing an increasingly vital role in preventive medicine, enabling early detection of diseases 
and reduction of health risks. AI algorithms can analyze vast datasets, including medical images, genetic 
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information, and lifestyle factors, to identify individuals at high risk for developing certain conditions like 
cancer, diabetes, and cardiovascular diseases, allowing for timely interventions (Hao et al., 2024). Predictive 
analytics models can forecast disease outbreaks and identify populations at risk, enabling public health 
organizations to implement targeted prevention strategies (Golinelli et al., 2025). Digital biomarkers, derived 
from data collected through wearable sensors and other digital health tools, can provide continuous 
monitoring of physiological parameters, detecting subtle changes that may indicate early stages of disease 
(Jabara et al., 2024). Quantum computing holds future potential for accelerating the analysis of complex 
biological data to identify novel biomarkers for early disease detection. 

Preventive medicine strategies leveraging these technologies primarily impact the biological dimension by 
enabling early detection and intervention, potentially preventing or delaying the onset of chronic diseases. By 
providing individuals with risk assessments and personalized recommendations, technology can also 
influence psychological well-being by empowering them to make proactive lifestyle changes. Public health 
initiatives informed by predictive analytics and digital surveillance systems can improve the overall health of 
communities, addressing the social determinants of health and promoting health equity. Commercial 
solutions include AI-powered diagnostic tools for medical imaging from companies like Enlitic and Viz.ai, as 
well as predictive analytics platforms for healthcare organizations from companies like Optum and Cerner 
(now Oracle Health). 

5.4 Clinical Decision Support Systems: Enhancing Diagnostic Accuracy and 
Treatment Guidance. 

Clinical Decision Support Systems (CDSS) utilize new technologies to assist healthcare professionals in 
making more informed and accurate decisions regarding vaccination, diagnosis and treatment (Grechuta et 
al., 2024; Specchia et al., 2024). LLMs can analyze patient records and medical literature to provide clinicians 
with relevant information, diagnostic suggestions, and treatment options, enhancing their decision-making 
capabilities. AI algorithms can analyze medical images, laboratory results, and patient data to identify 
patterns and anomalies that may be missed by human review, improving diagnostic accuracy and speed. NLP 
can extract key information from unstructured clinical notes and present it in a structured format, making it 
easier for clinicians to review patient histories and identify relevant factors for decision-making. Predictive 
analytics can forecast patient outcomes and treatment responses, helping clinicians choose the most effective 
interventions for individual patients. 

CDSS primarily impact the biological dimension by improving the accuracy and efficiency of diagnoses and 
treatment plans, leading to better patient outcomes. By providing clinicians with comprehensive and timely 
information, CDSS can also reduce stress and improve their confidence in making critical decisions, 
indirectly benefiting their psychological well-being. Furthermore, by standardizing care pathways and 
reducing diagnostic errors, CDSS can contribute to more equitable healthcare delivery, impacting the social 
dimension. Commercial examples include IBM Watson Health, Epic's integrated decision support tools, and 
numerous AI-powered diagnostic platforms for various specialties. 

5.5 Point-of-Care (PoC) Diagnostics: Enabling Rapid and Convenient Testing. 
Point-of-Care (PoC) diagnostics involve medical testing performed near or at the site of patient care rather 
than in a centralized laboratory. New technologies are enhancing the speed, accuracy, and accessibility of 
PoC diagnostics. AI algorithms can be integrated into portable diagnostic devices to analyze results in 
real-time, providing immediate feedback to healthcare providers (Pillay, Khan & Yenice, 2025). Digital 
biomarkers, collected through wearable sensors and analyzed using AI, can function as continuous PoC 
diagnostics, monitoring patient health status outside of traditional clinical settings. Microfluidics and 
nanotechnology are enabling the development of miniaturized and highly sensitive PoC testing devices for a 
wide range of analytes. Telemedicine platforms can facilitate specialists' remote interpretation of PoC test 
results, expanding access to diagnostic expertise. 
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PoC diagnostics primarily impact the biological dimension by enabling rapid and convenient testing, leading 
to quicker diagnoses and faster initiation of treatment. The accessibility of PoC testing can also improve 
psychological well-being by reducing anxiety associated with waiting for lab results and by allowing for 
immediate clinical decisions. Furthermore, by bringing diagnostic capabilities to the patient's location, PoC 
diagnostics can significantly improve access to healthcare for individuals in remote areas or with limited 
mobility, addressing the social dimension of health. Commercial examples include rapid antigen tests for 
infectious diseases, portable blood glucose monitors, and handheld ultrasound devices. 

5.6 Digital Biomarkers: Continuous Health Monitoring and Personalized 
Insights. 

Digital biomarkers are defined as physiological and behavioral data that are collected and measured by digital 
devices, such as wearables, portables, implantables, or digitals, and are used to explain, influence, and/or 
predict health-related outcomes (Goldhahn, 2017; Rochester et al., 2020). New technologies are crucial for 
the development and application of digital biomarkers. AI and machine learning algorithms are essential for 
analyzing the large volumes of data generated by these devices to identify meaningful patterns and insights. 
Wearable sensors can continuously monitor a wide range of physiological parameters, including heart rate, 
activity levels, sleep patterns, and glucose levels. NLP can be used to analyze patient-generated text data 
from journals or social media to identify behavioral biomarkers related to mental health or disease 
progression. Predictive analytics can leverage digital biomarker data to forecast health risks and predict 
disease exacerbations, enabling proactive interventions(Albites-Sanabria et al., 2024). 

Digital biomarkers provide continuous insights into a patient's biological state, allowing for personalized 
monitoring and early detection of health changes. The Mobilise-D consortium, for example, has developed 
and validated digital mobility outcomes (DMOs) for remotely monitoring physical mobility, which can be 
crucial for managing various health conditions (Rochester et al., 2020). The ability to track and understand 
their health data can also improve patients' psychological well-being by increasing their awareness and 
motivation to engage in healthy behaviors. Remote monitoring through digital biomarkers can enhance 
social health by allowing individuals to manage their conditions from home and maintain their 
independence. Activity and participation can be directly measured and encouraged through wearable devices 
that track movement and provide feedback. Commercial examples include wearable devices like the Apple 
Watch and Fitbit, continuous glucose monitoring systems from Dexcom and Abbott, and various 
AI-powered platforms for analyzing digital biomarker data.  

5.7 In Silico Medicine: a Critical Enabler of Precision Medicine. 
In Silico Medicine (ISM) represents a transformative approach in healthcare, where sophisticated 
computational models simulate biological processes at organ, tissue, and even cellular levels. Closely related 
to the concept of digital twins, ISM differs in scope: while digital twins are dynamic, continuously updated 
virtual replicas of specific patients or systems, ISM provides the scientific and technological foundation for 
their creation, validation, and use in predictive, personalized, and preventive medicine (Katsoulakis et al., 
2024; Viceconti et al., 2024). Regulatory agencies like the FDA and EMA are increasingly recognizing 
ISM-based evidence in regulatory decisions, especially for medical devices and pharmacological modeling. 

The development and deployment of ISM rely heavily on a convergence of advanced technologies. Artificial 
Intelligence (AI) and machine learning algorithms enable the construction and calibration of complex 
models capable of simulating physiology and forecasting treatment outcomes. Big data analytics is essential 
for integrating diverse data sources, including electronic health records (EHRs), medical imaging, genomics, 
and wearable sensors, into computational frameworks (Viceconti et al., 2024). These simulations often 
require high-performance computing (HPC) infrastructure to perform real-time, multiscale analyses, while 
virtual reality (VR) and augmented reality (AR) platforms enhance user interaction with the models, 
supporting decision-making and communication between clinicians and patients. 
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ISM has the potential to profoundly influence healthcare by supporting individualized treatment planning, 
testing interventions virtually before implementation, and improving outcomes through enhanced 
physiological insight. Moreover, immersive visualization of complex data can reduce patient anxiety and 
improve clinician confidence, contributing to psychological well-being (Katsoulakis et al., 2024). 

Pioneering research in ISM is being conducted at several leading institutions. The Insigneo Institute at the 
University of Sheffield is a global reference in the modeling of musculoskeletal systems and predictive 
simulations. The Auckland Bioengineering Institute in New Zealand excels in integrated modeling of 
organ-level physiology, while Johns Hopkins University’s Computational Cardiology Lab has made major 
advances in in silico simulation of cardiac function and electrophysiology. 

Commercial applications are also emerging. For instance, Atlas Meditech has developed tools that allow 
brain surgeons to rehearse operations using AI-enhanced 3D platforms and VR environments. Their 
systems generate realistic, patient-specific brain models based on CT and MRI data, enabling precise surgical 
planning and training. 

However, the widespread adoption of ISM and related technologies is currently limited by high 
implementation costs. Establishing these platforms requires investment in a wide range of enabling 
technologies—including smart automation, CAD, product lifecycle management (PLM), model-based 
systems engineering (MBSE), and extended reality (XR)—as well as the IT infrastructure to support 
real-time processing and secure data integration. While these costs are substantial, they are increasingly seen 
as a necessary investment for advancing precision medicine and clinical innovation. 

5.8 Digital Therapeutics: Delivering Software-Based Interventions for Various 
Conditions. 

Digital therapeutics (DTx) are evidence-based software programs designed to prevent, manage, or treat a 
medical disease or disorder (Chengyu, Xueyan & Ying, 2024; Fassbender et al., 2024). New technologies are 
central to the development and delivery of DTx. AI algorithms can personalize treatment plans and adapt 
interventions based on individual patient progress and data. Mobile apps and web-based platforms provide 
convenient and accessible delivery mechanisms for DTx. VR and AR can enhance the engagement and 
effectiveness of DTx by creating immersive therapeutic experiences for conditions like phobias, PTSD, and 
chronic pain. Digital biomarkers, collected through wearable devices, can provide objective measures of 
treatment adherence and outcomes for DTx. 

Digital therapeutics can directly address psychological health by providing accessible and personalized 
interventions for mental health conditions like anxiety, depression, and insomnia. They can also impact 
biological health by supporting the management of chronic conditions such as diabetes, hypertension, and 
obesity through lifestyle modifications and behavioral changes. By providing remote access to therapy and 
support, DTx can improve social health by reducing barriers to care and increasing patient engagement. 
Activity and participation can be promoted through DTx that incorporate gamification and tracking of 
physical activity. Commercial examples include FDA-approved DTx like Pear Therapeutics' reSET for 
substance use disorder and Somryst for chronic insomnia, as well as numerous other DTx in development 
for a wide range of conditions. 

5.9 Pain Management: Innovative Technological Solutions for Chronic and 
Acute Pain. 

New technologies are offering innovative solutions for managing both chronic and acute pain (Tan et al., 
2024). VR therapy has shown promise in reducing pain perception by distracting patients and creating 
immersive experiences that can alter pain pathways in the brain (Giannelli et al., 2024). AR can be used to 
overlay information and guidance during physical therapy exercises for pain rehabilitation. Digital 
therapeutics can deliver cognitive behavioral therapy and other psychological interventions for chronic pain 
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management through mobile apps and web-based platforms. Wearable devices can provide 
neuromodulation or electrical stimulation to alleviate pain. AI algorithms can analyze patient data to 
personalize pain management plans and predict treatment responses. 

These technologies primarily impact the biological dimension by providing non-pharmacological approaches 
to pain relief and management. VR and digital therapeutics can also significantly improve psychological 
well-being by reducing the emotional distress and anxiety associated with chronic pain. By enabling more 
effective pain management, technology can enhance activity and participation by allowing individuals to 
engage more fully in their daily lives. Commercial examples include VR pain management programs from 
companies like AppliedVR and Firsthand Technology and wearable pain relief devices from companies like 
NeuroMetrix and TENS units. 

5.10 Health Literacy: Leveraging Technology to Improve Patient 
Understanding. 

Technology plays a crucial role in enhancing health literacy, which is the degree to which individuals have 
the capacity to obtain, process, and understand basic health information and services needed to make 
appropriate health decisions (Deniz-Garcia et al., 2023; Pierce at al., 2025). LLMs can generate patient 
education materials in plain language, answer patient questions in an accessible manner, and translate 
complex medical information into various languages. VR and AR can provide immersive and interactive 
educational experiences, allowing patients to visualize their conditions and treatment plans in a way that is 
easier to understand than traditional text-based materials. Multimedia resources, including videos and 
animations, delivered through digital platforms can cater to different learning styles and improve 
comprehension. AI-powered chatbots can provide personalized health information and guidance based on 
individual patient needs and questions. 

Improving health literacy through technology primarily impacts the psychological dimension by increasing 
patients' understanding of their health conditions and treatment options, reducing anxiety, and empowering 
them to make informed decisions. Better understanding can also lead to increased adherence to treatment 
plans, positively impacting biological health. By making health information more accessible and 
understandable, technology can also improve social health by enabling individuals to navigate the healthcare 
system more effectively and advocate for their own needs. Commercial examples include patient education 
platforms like Krames and Healthwise, as well as various health information websites and apps. 

5.11 Digital Consent: Streamlining and Securing the Informed Consent 
Process. 

New technologies are transforming the process of obtaining informed consent from patients. Digital 
platforms can present consent forms in a clear and interactive manner, incorporating multimedia elements 
like videos and animations to explain procedures and risks more effectively than traditional paper-based 
forms (Cohen et al., 2023). LLMs can simplify the language of consent forms, making them easier for 
patients to understand. Electronic signatures and secure digital records streamline the consent process and 
ensure proper documentation. Telemedicine platforms with integrated digital consent features allow for 
remote consent, improving accessibility for patients in remote locations. Blockchain technology can provide 
a secure and auditable record of the consent process, enhancing trust and transparency. 

Digital consent processes primarily impact the psychological dimension by improving patients' 
understanding of the information they are consenting to, leading to more informed decisions and potentially 
reducing anxiety. The streamlined and convenient nature of digital consent can also improve social health by 
making the process more accessible and less burdensome for patients. Secure digital records also contribute 
to the ethical and legal aspects of healthcare. Commercial solutions include electronic health record systems 
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with integrated e-consent functionalities from vendors like Epic and Cerner (now Oracle Health), as well as 
dedicated digital consent platforms like DocuSign and Formstack. 

5.12 Digital Clinical Trials: Enhancing Efficiency and Accessibility in Research. 
Technology is revolutionizing the design, conduct, and analysis of clinical trials. Digital platforms can 
facilitate remote patient recruitment and enrollment, expanding the reach and diversity of study participants. 
Wearable devices and mobile apps enable remote and real-world data collection outside traditional clinical 
settings, reducing the need for frequent in-person visits and improving patient convenience (Mittermaier, 
Venkatesh & Kvedar, 2023). AI and machine learning algorithms can assist in identifying suitable candidates 
for trials based on complex inclusion and exclusion criteria, speeding up the recruitment process. NLP can 
analyze unstructured data from patient records to identify potential trial participants and extract relevant 
information for analysis. Predictive analytics can forecast patient dropout rates and identify factors 
influencing trial outcomes. Digital platforms also enhance data management, monitoring, and 
communication between researchers and participants. 

Digital clinical trials primarily impact the social dimension by increasing accessibility to research 
participation for a wider range of individuals, including those in remote areas or with mobility limitations. 
The convenience of remote participation and data collection can also improve the psychological well-being 
of participants. By accelerating the pace of research and improving the efficiency of trial processes, 
technology ultimately contributes to advancements in biological health through the development of new 
treatments and therapies. Commercial solutions include platforms like Medable and Science 37, which offer 
end-to-end solutions for conducting decentralized clinical trials. 

5.13 Digital Surveillance Systems: Monitoring and Managing Public Health. 
New technologies are crucial for enhancing public health surveillance and management. AI algorithms can 
analyze large datasets from various sources, including social media, news reports, and healthcare records, to 
detect and predict disease outbreaks in real-time. NLP can analyze text data for early signals of public health 
threats and monitor public sentiment and information related to health issues. Predictive analytics can 
forecast the spread of infectious diseases and identify high-risk populations, enabling timely public health 
interventions (Shakeri Hossein Abad et al., 2021). Geographic information systems (GIS) and mobile 
technologies can be used to track disease spread and coordinate response efforts. 

Digital surveillance systems directly impact the biological dimension by enabling early detection and control 
of disease outbreaks, protecting public health. By providing timely and accurate information to the public, 
these systems can also improve psychological well-being by reducing anxiety and uncertainty during public 
health emergencies. Effective public health surveillance contributes to social well-being by ensuring the 
health and safety of communities. Commercial examples include platforms developed by public health 
agencies like the CDC and WHO, as well as private sector solutions for disease surveillance and outbreak 
prediction. 

5.14 Virtual and Physical Assistants: Supporting Patients and Healthcare 
Professionals. 

Technology is enabling the development of both virtual and physical assistants to support patients and 
healthcare professionals. Virtual assistants, often powered by AI and NLP, can answer patient questions, 
schedule appointments, provide medication reminders, and offer emotional support (Cuthbert et al., 2024). 
Physical assistants, such as soft wearable exoskeletons, can aid in rehabilitation, provide support for 
individuals with mobility impairments, and reduce the physical strain on healthcare workers (Abery, Canetti 
& Hing, 2025). Robots are also being used to automate logistical tasks within hospitals, such as transporting 
supplies and medications, freeing up nurses and other staff to focus on direct patient care. 
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Virtual assistants can improve psychological well-being by providing patients with readily available 
information and support, reducing feelings of isolation and anxiety. Physical assistants like exoskeletons can 
enhance biological health by improving mobility and reducing physical strain. By automating tasks and 
providing support, both virtual and physical assistants can improve social health by increasing efficiency and 
allowing healthcare professionals more time for direct patient interaction and personalized care. Activity and 
participation can be directly supported by physical assistants that aid mobility and rehabilitation. 
Commercial examples include AI-powered chatbots from various healthcare providers and technology 
companies, as well as wearable exoskeletons like the ones developed by ABLE Human Motion and ReWalk 
Robotics. 

5.15 Age-Friendly Solutions: Tailoring Technology to the Needs of Older 
Adults. 

Technology is playing an increasingly important role in creating age-friendly environments and healthcare 
solutions that cater to the specific needs and challenges faced by older adults (Sülz et al., 2021; Dogra et al., 
2022). AI-powered virtual assistants can provide reminders for medications and appointments, offer 
companionship, and assist with daily tasks. Wearable sensors can monitor vital signs and activity levels, 
alerting caregivers or healthcare providers to potential health issues. Telemedicine platforms with 
user-friendly interfaces can facilitate remote consultations and monitoring, reducing the need for travel. VR 
and AR applications can provide engaging cognitive training and social interaction for older adults. Robotics, 
including social robots and assistive robots, can provide companionship, assist with mobility, and support 
daily living activities. 

Age-friendly technologies can significantly improve the psychological well-being of older adults by reducing 
feelings of loneliness and isolation, providing cognitive stimulation, and increasing their sense of 
independence and control. By enabling remote monitoring and early detection of health issues, these 
solutions can also positively impact biological health. Improved access to care through telemedicine and 
assistance with daily living activities can enhance social health by allowing older adults to maintain their 
independence and social connections. Assistive robots and wearable devices can directly support activity and 
participation by improving mobility and enabling engagement in daily tasks. Commercial examples include 
social robots like Pepper and Paro, telehealth platforms designed for seniors, and various wearable health 
monitoring devices. 

5.16 Innovative Health Data Representations: Visualizing Complex 
Information for Better Understanding. 

New technologies are enabling innovative ways to represent complex health data, making it easier for both 
patients and healthcare professionals to understand and interpret (Cuthbert et al., 2024). Interactive 
dashboards and visualizations can present large datasets in a user-friendly format, allowing for easy 
identification of trends and patterns. VR and AR can transform traditional 2D medical images into 
interactive 3D models, providing a more intuitive understanding of anatomical structures and medical 
conditions. Digital twins offer a dynamic and personalized way to visualize an individual's health status and 
potential treatment outcomes. AI-powered platforms can generate summaries and highlight key insights 
from complex medical reports, making it easier for clinicians to grasp the most important information 
quickly (Croxford et al., 2025). 

Innovative health data representations primarily impact the psychological dimension by improving 
understanding and reducing the cognitive burden associated with complex medical information for both 
patients and clinicians. Better visualization can lead to more informed decision-making and increased 
confidence in treatment plans, positively impacting biological health 10. By making health data more 
accessible and understandable, technology can also improve social health by empowering patients to engage 
more actively in discussions about their care. Commercial examples include data visualization tools from 
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companies like Tableau and Qlik, as well as specialized medical imaging software and platforms for creating 
digital twins. 

6. Maturity Assessment of Digital Health Solutions 
As digital technologies increasingly permeate healthcare, the concept of maturity assessment has emerged as 
a critical tool for evaluating the current development stage, adoption feasibility, and systemic impact of 
digital health solutions. Assessing the maturity of these innovations is essential for understanding not only 
their technical robustness but also their readiness for integration into clinical workflows, health system 
governance, and public acceptance. This multidimensional evaluation framework allows policymakers, 
investors, and healthcare managers to prioritize interventions, allocate resources efficiently, and foresee 
potential regulatory or economic challenges. 

Maturity in digital health can be dissected into at least three interrelated domains: technological readiness, 
innovation diffusion, and societal acceptance. Technological readiness refers to the level of technical 
development and performance reliability of a solution. This includes the solution’s functionality, 
interoperability, and scalability. For instance, while some AI-based diagnostic tools have achieved high levels 
of technical maturity and clinical performance (Esteva et al., 2019), others remain experimental and lack 
validation across diverse population groups (Topol, 2019a,b). 

Innovation readiness refers to the extent to which a digital health solution is integrated into clinical and 
administrative processes. A highly innovative product may still fail to gain traction if health institutions lack 
the infrastructure or capacity to adopt it effectively (Greenhalgh et al., 2017). Meanwhile, societal readiness 
involves public trust, ethical acceptability, and cultural alignment. Technologies such as telemedicine, though 
technically viable for over a decade, experienced delayed widespread adoption in part due to concerns about 
data privacy, patient-doctor interaction, and reimbursement policies—concerns that only began to shift 
substantially during the COVID-19 pandemic (Whitelaw et al., 2020). 

Understanding these varying levels of maturity is not merely an academic exercise. It has profound 
implications for regulatory strategy and healthcare expenditure. Technologies at a low maturity stage may 
require regulatory sandboxes, pilot testing, or conditional approvals to balance innovation with safety. In 
contrast, highly mature solutions may warrant accelerated pathways and systemic integration incentives. 
Moreover, maturity assessment informs cost-effectiveness analyses, as immature technologies often entail 
high initial costs, uncertain returns, and organizational disruption (Huang et al., 2019). In contrast, mature 
technologies with proven clinical utility can drive long-term cost savings through better disease 
management, prevention, and operational efficiencies. 

The European Commission has also underscored the importance of technology readiness assessment as a 
prerequisite for large-scale investment and public-private collaboration in health innovation (European 
Commission, 2020b). In the UK, the NHS has adopted digital maturity indices to evaluate the readiness of 
healthcare providers to integrate technologies and support decision-making in national funding allocations 
(NHS England, 2019). 

Below and in Table 2 we report and discuss the maturity assessment of some key digital health applications: 

● Technological Readiness Levels (TRL). This framework assesses the maturity of a technology based on 
a scale of 1 to 9, with 9 being the most mature (Mankins, 1995). Telemedicine is generally considered 
to be at TRL 9, as it is widely deployed and commercially available in many healthcare systems. 
mHealth apps for medication safety range from TRL 7 to 9, with various apps available to support 
clinical decisions and enhance medication use monitoring, although their effectiveness is still under 
investigation (Willemse et al., 2024) . VR for anxiety reduction is estimated at TRL 6 to 7, having 
demonstrated efficacy in research settings and gradually moving towards broader clinical adoption 
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(Donnelly et al., 2021). LLMs for virtual assistants are currently at TRL 5 to 7, showing promising 
results in research but still in the early stages of integration into clinical practice (Omar et al., 2024). 
Digital biomarkers, such as the DMOs being developed by the Mobilise-D consortium, are generally at 
TRL 4 to 6, indicating that they are under development and validation (Rochester et al., 2020). 

● HealthTech Innovation Readiness (HIR). This level assesses the readiness of a health technology for 
adoption and scaling within healthcare systems, considering factors such as clinical validation, 
regulatory approval, and market viability (CIMIT, 2017). Telemedicine has a High HIR as it is 
well-integrated into many healthcare systems and has established reimbursement models. mHealth 
apps have a Medium to High HIR, with increasing adoption rates, but challenges remain regarding 
regulation and the need for robust evidence of their clinical impact. VR for anxiety reduction has a 
Low to Medium HIR, requiring further integration into clinical workflows and demonstration of 
cost-effectiveness to achieve widespread adoption. LLMs for virtual assistants currently have a Low to 
Medium HIR due to ongoing concerns around data privacy, accuracy, and the need for clear regulatory 
pathways. Digital biomarkers also have a Low to Medium HIR, facing challenges in standardization, 
validation, and seamless integration with existing clinical data systems. 

● Societal Readiness Levels (SRL). This level reflects the societal acceptance, ethical implications, and 
regulatory frameworks surrounding a particular technology (Innovation Fund Denmark, 2015). 
Telemedicine has a High SRL, as it is generally accepted by both patients and healthcare providers, and 
regulatory frameworks are largely in place. mHealth apps have a Medium SRL, with some public 
concerns regarding data privacy, security, and the quality of health information provided. VR for 
anxiety reduction has a Medium SRL, with potential concerns related to accessibility, usability, and the 
immersive nature of the technology for some individuals. LLMs for virtual assistants currently have a 
Low to Medium SRL due to significant ethical considerations surrounding potential biases, the 
accuracy of information provided, and the potential for replacing human interaction in care; regulatory 
frameworks are still in the early stages of development. Digital biomarkers have a Medium SRL, with 
ongoing discussions around data ownership, privacy, and the appropriate interpretation of continuous 
data streams generated by these technologies. 

 
Table 2: Maturity Assessment of Key Digital Health Applications 

Application Enabling 
Technology (ies) 

TRL HIR SRL Example/Source 

Telemedicine 
Digital 
technologies, IoT 

9 High High 
Widely used for remote 
consultations. 

mHealth apps 
for medication 
safety 

Mobile health, AI 7-9 
Medium-Hig
h 

Medium 
Apps providing medication 
reminders and information 
(Fang et al., 2023). 

VR for anxiety 
reduction 

VR 6-7 
Low-Mediu
m 

Medium 

Study showing reduced 
anxiety in cancer patients 
(Alvarado-Omenat et al., 
2025) . 

LLMs for virtual 
assistants 

AI (LLMs, NLP) 5-7 
Low-Mediu
m 

Low-Medium 
Improved accuracy for 
complex health inquiries 
(Omar et al., 2024). 
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Digital mobility 
outcomes 
(DMOs) 

Wearable sensors, 
AI 

4-6 
Low-Mediu
m 

Medium 

Development by Mobilise-D 
consortium for remote 
monitoring (Rochester et al., 
2020) . 

 
In conclusion, assessing the maturity of digital health solutions is essential to aligning innovation trajectories 
with system-wide priorities and constraints. It enables a proactive, evidence-informed approach to health 
technology governance, ensuring that emerging solutions contribute meaningfully to clinical outcomes, 
system sustainability, and equitable access. 

7. Potential Impacts: Transforming Healthcare Outcomes, the 
Organization, and the Healthcare Expenditure. 
As seen in the previous sections, digital technologies are playing an increasingly transformative role in the 
healthcare sector, reshaping not only the quality of clinical outcomes but also the overall organization and 
the economic dynamics of health systems. As global healthcare systems contend with the mounting 
pressures of aging populations, rising chronic disease prevalence, and budgetary constraints, the adoption of 
digital innovations such as AI, telemedicine, remote monitoring, and integrated health platforms is enabling 
new models of care that are more personalized, efficient, and sustainable.  

Table 3: Potential Impacts of New Technologies in Healthcare 

Application Area Impact Category Specific Impact Supporting Data/Examples 

AI-powered 
diagnostics 

Clinical 
Outcomes 

Improved survival rates 
through early disease detection. 

AI aiding in the interpretation 
of medical imaging. 

Remote Patient 
Monitoring 

Clinical 
Outcomes 

Better management of chronic 
conditions, reduced hospital 
readmissions. 

Continuous glucose 
monitoring for diabetes 
management. 

VR for mental health Clinical 
Outcomes 

Reduction in anxiety and pain. VR significantly decreased 
anxiety in cancer patients. 

Decentralized 
Clinical Trials 

Cost-Effectivene
ss 

Lower costs and faster 
recruitment for clinical trials. 

Digital platforms enabling 
remote participation. 

Telemedicine Social Benefits Increased access to care for 
remote and underserved 
populations. 

Telehealth improving patient 
access. 

Digital Health 
Ecosystems 

Workforce Shift Emergence of new roles like 
telehealth coordinators and 
data analysts. 

Integration of LLMs into VA 
platforms. 

All Application 
Areas 

Education/Reski
lling 

Need for training in using new 
technologies and interpreting 
digital data. 

Healthcare professionals 
needing skills in telemedicine 
and AI-driven tools. 

 
Table 3 summarizes some of the directions along which impacts are observed. Below, we discuss in more 
detail these impacts following the categories listed in Table 3. 

Clinical Outcomes. From a clinical perspective, digital tools have significantly improved diagnostic 
accuracy, treatment personalization, and disease monitoring, leading to better health outcomes. AI 
algorithms are now capable of detecting conditions like diabetic retinopathy, breast cancer, and cardiac 
arrhythmias with levels of accuracy comparable to, or even exceeding, human specialists (Esteva et al., 2019; 
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Topol, 2019a,b). Similarly, digital biomarkers and wearable devices allow for continuous, real-time 
monitoring of patients with chronic conditions such as heart failure or diabetes, enabling earlier 
interventions and reducing emergency hospitalizations (Insel, 2017; Steinhubl et al., 2015). Digital health 
platforms also foster greater patient engagement and adherence by delivering tailored health information 
and facilitating two-way communication with care teams (Murray et al., 2011). AI-driven diagnostic tools can 
lead to earlier and more accurate diagnoses, which can dramatically increase survival rates for diseases like 
lung cancer, potentially improving the five-year survival rate from 10% to 70% (Huang, Yang et al., 2023). 
AI-enhanced surgery tools, such as the Da Vinci Surgical System, can improve surgery accuracy by around 
16.3% and reduce surgery times in over 57% of cases 9. Remote patient monitoring systems, particularly 
those powered by AI, have been shown to decrease patient visits to physicians by 47% and reduce hospital 
admissions of elderly patients by 40% (Morrish et al., 2023). Predictive analytics can also forecast in-hospital 
mortality with an AUC-ROC of 0.86 (Li et al., 2025). AI-powered systems can detect early signs of diseases 
like Alzheimer's, COPD, and kidney disease years before symptoms appear, allowing for timely interventions 
(Tang & Sirota, 2024). Furthermore, AI-driven systems have demonstrated the ability to detect diseases like 
skin cancer and diabetic retinopathy with accuracy comparable to that of experienced clinicians (Esteva et 
al., 2017). These advancements support the shift toward more personalized and preventive care models, 
allowing for timely, data-informed decisions that improve the trajectory of treatment and recovery. 
Additionally, wearable devices and mobile health applications have empowered patients—particularly those 
with chronic conditions—to monitor and manage their health actively, leading to better adherence to care 
plans and fewer hospital readmissions (Kvedar et al., 2016). 

Cost-Effectiveness. The implementation of new technologies in healthcare also shows promise in terms of 
cost-effectiveness. AI-driven automation of administrative tasks, such as managing patient records and 
scheduling appointments, has the potential to save billions annually (Lavoie-Gagne et al., 2025). AI can also 
improve the speed and accuracy of detecting fraudulent Medicare claims, leading to significant financial 
savings (Florida Atlantic University, 2023). Predictive analytics can optimize resource allocation in hospitals, 
improve the accuracy of health insurance rate calculations, and prevent fraudulent insurance claims, 
contributing to overall cost reduction (Nwosu, 2025). Telemedicine has been found to be a cost-effective 
alternative for delivering outpatient care, reducing costs for both patients and the healthcare system. 

Workforce Shift. These technological changes are also reshaping the healthcare workforce. The integration 
of new technologies will inevitably lead to a shift in the healthcare workforce, requiring new skills and 
professions. While technology is not expected to replace healthcare professionals entirely, it will augment 
their capabilities and change the nature of their tasks (World Economic Forum, 2023). Tasks traditionally 
performed by physicians or nurses—such as triaging patients, interpreting test results, or providing 
follow-up instructions—can now be supported or automated by intelligent systems. The automation of 
administrative processes such as scheduling, billing, and documentation has reduced the burden on clinical 
staff, freeing up time for patient interaction and care delivery. In fact, AI will likely minimize the time 
physicians and nurses spend on routine administrative tasks, allowing them to focus more on direct patient 
care (Bundy et al., 2024). This shift allows human resources to be reallocated to more complex, relational, or 
supervisory roles, contributing to a more flexible and resilient workforce model (OECD/European Union, 
2020). Moreover, remote care models and telemedicine have the potential to redistribute workloads 
geographically, reduce provider burnout, and expand access to underserved areas (Whitelaw et al., 2020). 
New tech-based roles are expected to emerge, such as telemedicine specialists, healthcare data analysts, AI 
and robotics technicians, and cybersecurity experts. While some roles may evolve or be replaced by 
automation, digital technologies are more likely to augment human capabilities rather than eliminate them. 
The effective use of AI and data analytics can enhance clinical decision-making and operational efficiency, 
but human judgment, empathy, and communication remain essential in patient care. This balance between 
technology and the human element will be central to the success of digital transformation in healthcare. 
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Education and Reskilling. Healthcare professionals will need to develop new skills and training, 
particularly in data literacy, human-machine interaction, and ethical oversight, including skills in using EHR 
systems, telemedicine platforms, and AI and data analytics applications (Doll et al., 2024). Continuous 
professional development programs will need to evolve to incorporate training on these new technologies 
and skills. To prepare the healthcare workforce for the digital future, significant efforts in education and 
reskilling will be required (Ferreira et al., 2025). Healthcare professionals must now collaborate across 
interdisciplinary teams in increasingly complex digital ecosystems. As Topol (2019a,b) notes, this 
transformation necessitates a rethinking of medical education and continuous professional development to 
prepare workers for a technology-augmented clinical environment. Healthcare institutions will need to offer 
comprehensive training programs catering to various skill levels, from basic digital literacy to advanced 
specialist programs in areas like clinical informatics and data science. Governments can play a key role by 
creating policies and incentive schemes to support the digital transformation of healthcare services and 
promote digital upskilling and retraining of healthcare professionals (McKinsey & Company, 2019). 
Partnerships between academia and industry will be crucial for developing relevant curricula and ensuring 
that healthcare professionals acquire the necessary skills to work effectively with new technologies (Brooks, 
2023). To fully realize the potential of digital health innovation, healthcare systems must invest not only in 
new technologies but also in the training and support of their workforce. Infrastructure development, 
equitable access to digital tools, and ethical considerations around data use are equally crucial to ensuring 
that these innovations translate into meaningful and inclusive improvements. In the years ahead, the synergy 
between technological advancement and human-centered care will be a defining feature of successful 
healthcare systems. 

Social Benefits. The social benefits of new technologies in healthcare are wide-ranging. Telemedicine can 
improve access to care for underserved rural areas and vulnerable populations, breaking down geographical 
barriers and reducing health inequities. AI-assisted medical services can also benefit these underserved areas 
(Cruickshank, Wade & Bajwa, 2024). AI can help overcome language barriers in healthcare settings through 
translation capabilities (Genovese et al., 2024). Digital health interventions can empower patients to actively 
manage their health and boost their participation in shared decision-making (Pierce et al., 2025). AI-driven 
tools can also help to assess ambulance needs and optimize resource allocation, ensuring timely medical 
assistance (Selvan et al., 2025). Furthermore, AI has the potential to reduce human decision-making biases 
in healthcare, contributing to more equitable care. 

The integration of digital technologies also brings important implications for healthcare expenditure. While 
some innovations entail high upfront investments in infrastructure, software, and training, their long-term 
use may yield cost savings through reduced hospitalizations, better disease management, and improved 
workflow efficiencies (Meskó et al., 2017). For instance, predictive analytics can help optimize resource 
allocation and identify at-risk populations early, thereby reducing unnecessary procedures and admissions 
(Rajkomar et al., 2019). Nonetheless, there is a risk of widening disparities if these technologies are unevenly 
adopted or if cost savings are not reinvested equitably. 

Finally, while the potential benefits of digital health are substantial, their realization depends on appropriate 
regulatory frameworks, interoperability standards, and governance mechanisms. Ensuring the safe, equitable, 
and effective deployment of these tools requires cross-sector collaboration and strong leadership from both 
health institutions and policymakers. In sum, digital technologies are catalyzing a fundamental 
transformation in how care is delivered, measured, and experienced. They hold promise not only for 
improving clinical outcomes but also for reshaping the healthcare workforce and promoting financial 
sustainability. Realizing this potential, however, requires thoughtful planning, inclusive design, and 
continuous evaluation to ensure that innovation supports both efficiency and equity in healthcare systems. 
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8. Regulating Innovation in the Healthcare Sector 
As we have seen above, digital medicine is at the forefront of a profound transformation in healthcare 
delivery. The rapid acceleration of digital innovation in healthcare presents a profound challenge to existing 
regulatory frameworks, particularly in national health systems such as the NHS. By integrating technologies 
such as artificial intelligence, mobile health applications, wearable sensors, telemedicine platforms, and 
genomics into everyday clinical practice, digital medicine promises to radically improve how care is delivered, 
accessed, and experienced. While these tools hold immense promise for improving patient outcomes, system 
efficiency, and equity, they also introduce significant risks related to safety, accountability, data governance, 
and ethical compliance. However, the swift and disruptive nature of these innovations has outpaced the 
capacity of traditional regulatory frameworks to ensure their safe, equitable, and ethical deployment.  

Regulation plays a dual role in this context: it must safeguard public trust and patient safety while also 
enabling innovation and system responsiveness. In the NHS, this balancing act has become increasingly 
complex as digital technologies blur the boundaries between medical devices, consumer health tools, and 
data platforms (Nuffield Council on Bioethics, 2018). Traditional regulatory models—designed mainly for 
pharmaceuticals and hardware-based devices—struggle to accommodate the iterative nature of AI 
algorithms, the decentralized nature of digital platforms, and the shifting locus of care from hospitals to 
homes and smartphones (Topol, 2019a,b). 

Historically, healthcare regulation has evolved to address the safety, efficacy, and quality of more 
conventional technologies, such as pharmaceuticals and medical devices. These tools are typically 
well-defined, subject to lengthy clinical trials, and relatively stable in their behavior once approved. In 
contrast, digital technologies often function in real-time, involve adaptive machine learning systems, and 
operate in highly data-rich environments. As such, regulating digital medicine requires rethinking not just the 
tools of oversight but the very principles underpinning health governance in the digital age. 

The role of regulation in digital medicine is more critical than ever, given the complex, interconnected nature 
of these technologies and the potential risks they pose to patients and health systems if left unchecked. The 
principal aims of regulation—ensuring public safety, promoting transparency, securing data integrity, and 
fostering public trust—must be maintained and extended to new areas introduced by digital innovation. 
Without appropriate regulatory mechanisms, the benefits of digital medicine may be undermined by 
unintended harms, including the misuse of personal data, exacerbation of health disparities, or the 
deployment of untested or ineffective technologies. 

8.1 Emerging Regulatory Frameworks and Approaches 
In response to these emerging needs, regulators in various jurisdictions have begun to adapt their 
approaches. In the European Union, the proposed Artificial Intelligence Act represents one of the most 
comprehensive efforts to date to regulate AI technologies, including their use in health. This proposal 
introduces a risk-based framework in which AI applications are categorized according to the level of risk 
they pose to users. Medical AI tools are typically classified as high-risk, which subjects them to stricter 
regulatory scrutiny, including requirements for transparency, human oversight, and post-market monitoring 
(European Commission, 2021). 

In the United States, the Food and Drug Administration (FDA) has established the Digital Health Center of 
Excellence, an initiative aimed at developing regulatory science and guidance for the safe and effective use of 
digital health tools. The FDA has also explored the use of “software precertification” models that streamline 
the approval process for developers with proven track records of quality and responsibility while still 
maintaining rigorous safety standards (FDA, 2020). 

In the United Kingdom, the Medicines and Healthcare products Regulatory Agency (MHRA) has updated 
its approach to covering Software as a Medical Device (SaMD), including AI-driven tools. Concurrently, the 
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National Institute for Health and Care Excellence (NICE) has issued a comprehensive evidence standards 
framework for evaluating digital health technologies. This framework assesses both the clinical and 
economic value of digital interventions, aiming to ensure that innovations deliver meaningful benefits to 
patients while representing an efficient use of public resources (NICE, 2022). 

One of the key regulatory challenges is the assessment of safety and effectiveness in real-world settings. 
AI-driven clinical decision tools, for instance, may evolve through machine learning after deployment, 
raising questions about how to ensure continued compliance with safety standards (Hatherley, 2020). 
Regulatory bodies such as the MHRA and NICE are increasingly tasked with developing agile frameworks 
that can account for “adaptive algorithms” and software as a medical device (SaMD). The recent 
establishment of the NHS AI Lab and its Regulatory Sandbox initiative reflects a growing institutional 
recognition of the need for collaborative, flexible, and anticipatory regulatory models (NHSX, 2021). 

In parallel, data governance has emerged as a cornerstone of digital health regulation. One of the defining 
features of digital medicine is its reliance on real-time data collection and analysis. Many digital health tools 
function continuously and adaptively, drawing on user inputs, environmental data, or system feedback to 
modify their outputs. This continuous evolution means that regulatory assessments must also be continuous, 
capable of tracking post-deployment behavior and ensuring long-term reliability and safety. Static models of 
regulatory approval, based on pre-market evaluation alone, are increasingly inadequate for overseeing the 
dynamic nature of digital technologies. With increasing reliance on large-scale patient data—often stored in 
cloud-based systems or shared across providers—ensuring the integrity, security, and privacy of health 
information is paramount. The UK General Data Protection Regulation (UK GDPR), which aligns with the 
EU’s framework, mandates strict rules around data processing, consent, and patient rights. However, 
operationalizing these principles in dynamic, data-rich environments like those generated by real-time health 
monitoring or predictive analytics remains a significant challenge (Morley, Machado et al., 2020). 

Furthermore, the sensitive nature of health data, which is central to the functioning of most digital health 
applications, raises urgent questions about privacy and data protection. Regulations must, therefore, address 
not only the performance of technologies but also the ethical and legal dimensions of data governance. This 
includes the way in which data are collected, stored, shared, and interpreted, particularly when algorithms 
are involved in making or supporting clinical decisions. As digital medicine becomes more reliant on 
predictive analytics and AI-driven recommendations, the need for stringent, clearly defined regulatory 
standards becomes paramount. 

8.2 Persistent Regulatory Challenges 
Despite these promising developments, a number of unresolved challenges persist. One of the most pressing 
is the discrepancy between the speed of innovation and the pace of regulatory adaptation. Technological 
change, particularly in digital health, is moving rapidly. New applications, updates, and iterations regularly 
emerge, while regulatory processes often remain slow, deliberative, and reliant on lengthy 
evidence-generation cycles. This mismatch can result in delays in the deployment of beneficial technologies 
or, conversely, the premature release of insufficiently vetted tools into clinical practice. 

Another significant challenge is the lack of transparency in algorithmic processes. Many AI-driven systems 
function as “black boxes,” offering little visibility into how outputs are generated. This opacity complicates 
regulatory evaluation, especially in clinical contexts where the rationale behind a recommendation or 
diagnosis must be clear and defensible. When clinicians are expected to trust or act upon AI-generated 
insights, regulators must ensure that these systems are not only accurate but also explainable and 
accountable (Hatherley, 2020; Leslie, 2021). In addition to technical and procedural challenges, the regulation 
of digital medicine must contend with profound ethical concerns. These include questions about equity and 
access, particularly for populations that may lack digital literacy, reliable internet connectivity, or access to 
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smart devices. Regulators must ensure that digital innovation does not deepen existing health inequalities but 
rather contributes to more inclusive and equitable health systems. 

Moreover, the globalization of digital health technologies raises questions about harmonization. While some 
jurisdictions move quickly to regulate, others lag behind, resulting in regulatory fragmentation. This 
inconsistency can hinder the development of international markets, reduce clarity for developers, and 
complicate the implementation of cross-border digital health solutions. Greater alignment in international 
standards and regulatory cooperation is urgently needed to support the responsible globalization of digital 
medicine (WHO, 2021). 

Looking ahead, the future of regulation in digital medicine will depend on the ability of institutions to 
embrace adaptive governance—a model that allows for regulatory flexibility while maintaining core 
principles of safety, efficacy, and equity. Adaptive governance involves continuous learning, feedback loops, 
stakeholder engagement, and iterative policymaking. Mechanisms such as regulatory sandboxes—controlled 
environments where new technologies can be tested under supervision—offer valuable models for 
balancing innovation with oversight. Equally important is the integration of ethics into regulatory design. As 
digital health tools become more pervasive, regulators must consider not only how these tools function 
technically but also how they shape relationships between patients and providers, affect autonomy and 
consent, and influence clinical judgment. Ethical frameworks, such as those proposed by the Alan Turing 
Institute and others, can provide foundational principles for responsible regulation and guide the 
development of policies that reflect both technological realities and societal values (Floridi et al., 2018). 

In conclusion, regulation in digital medicine is not an afterthought; it is a central pillar of sustainable 
innovation. As healthcare systems increasingly rely on digital tools to address challenges of access, efficiency, 
and quality, the need for thoughtful, robust, and future-oriented regulation becomes more urgent. 
Regulatory institutions must evolve alongside the technologies they oversee, adopting adaptive models of 
oversight, fostering transparency, protecting individual rights, and ensuring equitable access to the benefits 
of digital health. Only through such a coordinated and principled approach can digital medicine fulfill its 
promise to transform healthcare for the better. 

8.3 Regulation of Large Language Models in Healthcare: Navigating Emerging 
Challenges 
The rapid advancement of large language models (LLMs) has spurred considerable excitement about their 
potential to transform healthcare delivery. LLMs—sophisticated artificial intelligence systems that generate 
human-like text—are being explored for an array of applications, ranging from patient education and 
communication to clinical documentation and decision support. Specifically, LLMs are being explored for 
tasks such as answering patient queries, summarizing or translating complex medical texts, and supporting 
documentation processes (Rathnayake et al., 2023). Their capacity to interpret and produce natural language 
aligns closely with patient-centered care goals, including accessibility, personalization, and informed 
decision-making. However, as these technologies become more integrated within healthcare systems, 
significant regulatory challenges have emerged that demand scrutiny. These challenges encompass issues of 
safety, accuracy, transparency, data privacy, and the ethical use of patient information, calling for the 
development of adaptive and robust regulatory frameworks. 

It is important to distinguish between regulatory frameworks developed for artificial intelligence (AI) 
broadly and those that are (or should be) tailored to LLMs specifically. General AI regulation often focuses 
on risk classification, transparency, and explainability in algorithmic decision-making. However, LLMs 
present unique regulatory concerns due to their generative nature, probabilistic outputs, and unpredictability 
in language generation. Unlike AI systems trained for narrow, rule-based tasks (e.g., image classification), 
LLMs operate with vast, generalized language corpora and can produce unstructured text that mimics 
human discourse without providing verifiable reasoning or clinical grounding (Leslie, 2021). This introduces 

45 
 



regulatory blind spots around the authorship, reliability, and legal accountability of outputs—especially when 
LLMs are embedded in clinical decision support tools or used directly in patient communication. Regulatory 
frameworks must, therefore, include content auditing, usage boundaries, and domain-specific fine-tuning 
requirements that account for the distinctive risks LLMs pose in healthcare contexts. 

According to Meskó & Topol (2023), LLMs in healthcare face unique regulatory hurdles compared to more 
traditional AI applications. Their generative nature means that LLMs do not simply classify or predict 
outcomes but actively produce text-based content. These characteristics raise concerns over the accuracy 
and completeness of the information provided, especially when the language output informs clinical 
decisions or patient self-management. As highlighted in the article, cases of biased, incomplete, or even 
potentially misleading outputs underscore the risk that LLMs pose if their use is not adequately controlled. 
Busch et al. (2025) have conducted a recent systematic review of 89 studies across 29 medical specialties 
(conducted between 2022 and 2023) where they find that while LLMs are already being tested in clinical and 
patient-facing contexts, most are not optimized for medical environments. Critical concerns include a lack of 
transparency in data provenance, limited adaptation to clinical language, and insufficient safeguards to 
ensure output accuracy. These issues raise ethical and safety questions, particularly as LLMs may generate 
content that is inaccurate, incomplete, or biased, potentially misleading both patients and clinicians 
(Hatherley, 2020; Morley et al., 2020). 

Moreover, the opacity of LLMs—often described as the “black box” problem—complicates the regulatory 
process. Traditional regulatory frameworks are typically geared toward static, well-understood technologies. 
In contrast, LLMs are dynamic, frequently updated systems that continuously learn from new data inputs. 
This fluidity challenges existing approval processes and demands continuous monitoring and 
post-deployment audits (Leslie, 2021). Furthermore, the data used to train these models often include 
sensitive patient health information, making compliance with existing data protection regulations, such as 
the UK GDPR and HIPAA in the United States, a critical but complex issue (Morley, Floridi et al., 2020; 
Morley, Machado et al., 2020). 

Given these challenges, regulation must play a multi-faceted role, and it is pivotal in governing the 
development and deployment of LLMs in healthcare. Regulatory oversight must address not only traditional 
dimensions of medical device safety and efficacy but also novel considerations such as algorithmic bias, 
explainability, and dynamic learning. Unlike conventional medical technologies, LLMs may evolve 
post-deployment—changing their behavior in response to new data or updates—which challenges static 
approval models and demands continuous monitoring mechanisms (European Commission, 2020b). 

First and foremost, regulation should ensure that LLMs deployed in healthcare are safe and effective. This 
involves not only the initial approval based on technical performance and clinical validation but also 
establishing mechanisms for ongoing monitoring to capture any deviations from approved behavior as the 
models evolve. Regulatory bodies need to implement guidelines that require transparency in the training data 
and decision-making processes of LLMs, along with clear accountability for any errors or adverse outcomes 
(European Commission, 2021). 

Second, regulatory frameworks should address issues of data governance. With the increasing reliance on 
vast datasets, proper handling of patient data becomes paramount. Regulations must stipulate robust data 
anonymization techniques and secure data-sharing protocols. Furthermore, ethical oversight is required to 
ensure that the benefits of LLMs—such as improved patient education and streamlined clinical 
workflows—do not come at the expense of patient autonomy or privacy (WHO, 2021). 

Third, the regulation of LLMs needs to be adaptive. Because these models can evolve post-deployment, 
static regulatory approval is insufficient. Instead, regulators should consider adaptive regulatory 
frameworks—such as regulatory sandboxes and real-time performance audits—that allow experimentation 
under controlled conditions while ensuring patient safety (Hatherley, 2020). This adaptive approach also 
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provides a mechanism for the periodic re-evaluation of LLMs to keep pace with technological advancements 
and evolving clinical contexts. 

Moreover, LLMs pose complex challenges related to data privacy and consent, particularly when trained on 
or applied to sensitive health data. Compliance with data protection laws such as the UK GDPR and 
HIPAA in the U.S. is not always straightforward, especially when model training involves indirect exposure 
to identifiable information (Leslie, 2021). In this context, frameworks such as the EU’s proposed AI Act and 
the WHO’s guidance on trustworthy AI in health are essential in shaping future regulatory responses 
(European Commission, 2021; WHO, 2021). 

In summary, the integration of LLMs into healthcare holds transformative promise but also presents 
significant regulatory challenges. A comprehensive regulatory framework must not only ensure safety, 
efficacy, and transparency but also be dynamic enough to respond to the continually evolving nature of these 
technologies. Policymakers, regulatory agencies, and healthcare providers need to work in tandem to develop 
adaptive regulatory models that balance the benefits of innovation with the imperatives of patient safety, 
data governance, and ethical use. As the digital revolution accelerates, the ongoing evolution of regulation 
will be critical in shaping how LLMs and other digital health technologies ultimately contribute to improved 
healthcare outcomes and more efficient healthcare systems. Ultimately, effective regulation must strike a 
balance between innovation enablement and risk mitigation. Regulatory sandboxes, algorithmic impact 
assessments, and interdisciplinary oversight bodies may offer pathways for safe experimentation and iterative 
improvement. Given their far-reaching implications, LLMs should be subject to a robust, context-sensitive 
regulatory regime that evolves alongside the technologies themselves, prioritizing transparency, 
accountability, and patient safety. 

8.4 The Role of Health Technology Assessment in Digital Medicine 
The evaluation of value for money and cost-effectiveness in digital health interventions requires new 
approaches. Traditional health technology assessment (HTA) methods, which are often based on static 
clinical trials and fixed pricing models, may not be well-suited to rapidly evolving technologies with complex 
pricing structures or data-driven value creation (Drummond et al., 2020). The rapid rise of digital medicine 
and diverse functionalities pose unique challenges to traditional methods of evaluating medical technologies. 
In this evolving context, Health Technology Assessment (HTA) must adapt to ensure that digital health 
interventions are rigorously assessed for their safety, effectiveness, value for money, and broader ethical and 
societal impacts. HTA is a multidisciplinary process that systematically evaluates the medical, social, 
economic, and ethical implications of the development, diffusion, and use of health technologies. 
Historically, HTA has focused on pharmaceuticals, medical devices, diagnostic tests, and surgical procedures. 
The core objectives have remained consistent: to inform decision-making by payers, policymakers, and 
clinicians, ensure the optimal allocation of limited resources, and promote evidence-based adoption of new 
technologies (Drummond et al., 2015). 

With the expansion of digital medicine, HTA now faces new frontiers. Unlike conventional health 
technologies, many digital interventions are software-based, data-intensive, and iterative in nature, often 
updated in real-time or through machine learning mechanisms. These characteristics challenge static, 
one-time assessments and call for more dynamic and lifecycle-based HTA frameworks. Assessing digital 
health technologies requires expanding the methodological scope of HTA in several key ways. First, 
traditional clinical trials may be ill-suited to evaluate many digital tools, particularly mobile apps or AI-driven 
systems that evolve rapidly or operate in decentralized care settings. Alternative methodologies—such as 
real-world evidence (RWE) studies, pragmatic trials, or adaptive designs—may be more appropriate, though 
they also introduce complexity in data interpretation and generalizability (Husereau et al., 2022). 

Second, the value proposition of digital medicine often lies not solely in clinical outcomes but in 
improvements to care pathways, workflow efficiency, patient empowerment, or remote accessibility. These 
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domains are less readily captured by standard measures such as quality-adjusted life years (QALYs) or 
cost-per-case avoided. As such, HTA must increasingly integrate patient-reported outcomes, user experience 
metrics, and qualitative evidence to fully appraise the utility of digital interventions (Taylor et al., 2021). 

Third, digital health technologies pose distinct implementation and scalability challenges, including issues 
related to interoperability, cybersecurity, workforce readiness, and regulatory compliance. An effective HTA 
of digital medicine must, therefore, consider not only the intrinsic merit of a given technology but also the 
contextual conditions necessary for its successful deployment and sustained impact within health systems. 

Economic evaluation—a central component of HTA—must also evolve to accommodate digital medicine. 
Traditional models of cost-effectiveness may be constrained when applied to technologies with non-linear 
cost structures, such as those involving subscription models, cloud-based storage, or variable costs tied to 
usage levels. Moreover, many digital tools may exert indirect or long-term benefits, such as reduced hospital 
readmissions or improved chronic disease management, which are difficult to quantify within conventional 
evaluation timeframes. In light of these complexities, HTA agencies such as NICE in the UK have 
introduced modified evidence frameworks for digital health technologies. These frameworks propose tiered 
levels of evidence requirements depending on the potential risk, complexity, and intended purpose of the 
technology (NICE, 2022). They also emphasize the importance of early dialogue between developers and 
regulators to align evaluation standards with innovation cycles. 

HTA in digital medicine must also engage with ethical, legal, and societal dimensions that are increasingly 
central to public and policy debates. This includes algorithmic transparency, bias mitigation, equitable access, 
and the preservation of the clinician-patient relationship in increasingly automated contexts (Floridi et al., 
2018). For example, AI-based clinical tools raise concerns about algorithmic bias, explainability, and the 
shifting boundaries of clinical responsibility. Digital therapeutics and mental health apps raise questions 
about privacy, surveillance, and the digital divide. These issues necessitate the inclusion of ethical impact 
assessments and stakeholder engagement processes within the HTA framework (Refolo et al., 2021). 
Furthermore, all public healthcare systems, as public institutions with a strong equity mandate, must ensure 
that digital innovation does not exacerbate existing health disparities or create new forms of exclusion due 
to digital illiteracy, infrastructure gaps, or algorithmic bias. In addition, the distributional consequences of 
digital innovation must be assessed. While digital tools may expand access for some populations, they may 
simultaneously exclude others—particularly those with limited digital literacy, language barriers, or 
inadequate internet access. A comprehensive HTA should examine the equity implications of digital 
technologies and offer guidance on mitigating health disparities. 

Given the dynamic and multidimensional nature of digital health interventions, HTA is increasingly being 
reconceptualized as a continuous and iterative process rather than a single decision point. This approach, 
sometimes referred to as “lifecycle HTA”, emphasizes early dialogue, ongoing monitoring, and post-market 
reassessment as key components of responsible health innovation governance (Oortwijn et al., 2017). Such 
models recognize that the performance and value of digital technologies can evolve significantly over time 
and that their successful integration into healthcare systems depends on contextual, behavioral, and 
infrastructural factors. This shift also aligns with the growing emphasis on adaptive regulation, in which 
HTA is integrated with real-time data collection, stakeholder feedback, and conditional approval 
mechanisms. By embedding HTA within broader digital governance structures, health systems can more 
effectively balance innovation with oversight, fostering environments that encourage both experimentation 
and accountability. 

One of the distinguishing features of DTx is their dependence on sustained user engagement for therapeutic 
efficacy. Factors such as user interface design, personalization, feedback mechanisms, and digital literacy can 
all influence adherence. HTA must, therefore, consider behavioral science and usability studies as part of the 
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clinical assessment process (Kumar et al., 2013). High attrition rates may significantly reduce real-world 
effectiveness even when trial results are positive. 

Digital therapeutics often process sensitive health data, raising concerns about privacy, data governance, and 
interoperability with existing health information systems. These dimensions are increasingly incorporated 
into HTA, particularly under frameworks like the EU GDPR, which mandates strict data protection 
protocols (European Commission, 2020a). Ethical issues such as algorithmic bias, unequal access, and the 
commercialization of health data also require scrutiny. Some HTA bodies have begun to develop tailored 
frameworks for DTx evaluation. In Germany, the Federal Institute for Drugs and Medical Devices (BfArM) 
has introduced the DiGA fast-track process, which allows temporary reimbursement of DTx pending 
further evidence of benefit. Similarly, NICE in the UK has developed the Evidence Standards Framework 
for Digital Health Technologies, which outlines tiered evidence requirements based on clinical risk and 
intended purpose (NICE, 2022). These frameworks signal a shift toward more adaptive and iterative HTA 
models, which recognize the dynamic nature of software and the need for continuous data collection and 
evaluation post-launch. 

Despite progress, significant challenges remain. The heterogeneity of DTx, the lack of standardized 
outcome measures, and the need for long-term data complicate comparative assessments. Furthermore, 
capacity gaps within HTA organizations—particularly regarding digital literacy and software evaluation 
expertise—may hinder effective appraisal. To address these issues, there is a growing call for international 
harmonization of HTA methodologies, greater investment in HTA workforce development, and stronger 
collaboration between regulators, payers, developers, and patients. Real-time data-sharing platforms, 
post-market monitoring systems, and hybrid evaluation models may offer pathways toward more responsive 
and informed decision-making. As digital innovations proliferate and diversify, HTA methodologies must 
evolve to capture their unique characteristics, assess their real-world performance, and respond to the 
ethical, societal, and economic questions they raise. Through the development of adaptive, inclusive, and 
interdisciplinary frameworks, HTA can continue to provide a robust foundation for evidence-informed 
decision-making in the digital age of medicine. 

9. Healthcare Technologies and Costs 
Health technology has long been blamed for its important impact on rising healthcare costs. With its 
increasing complexity in recent decades, accompanied by unprecedented scarce public finances, it will 
continue to receive much attention from economists. While healthcare sustainability is at risk, health 
technology may represent both the source and the solution to the problem of mounting costs. An 
overwhelming number of health innovations have proven to be cost-effective and game-changing for vast 
portions of the world's population. However, it is less clear to what extent their introduction has indeed 
delivered enough value to patients and societies. The challenges for policymakers will evolve around the 
proper identification of technologies with adequate benefits vs. affordability, conditional on safety. On the 
one hand, identification is likely to be more productive if scanning of the possible technologies under 
development is undertaken. On the other hand, policy efforts will have to provide incentives to invest in 
technologies that are relevant from the social welfare point of view. Among the most innovative health 
technology domains, such as health information technology and precision medicine, it is utterly unclear how 
their evolution will shape future healthcare. Nevertheless, already acknowledged promises of digital health 
are likely to provide important cost reductions in the provision mechanisms of many services. 

A substantial body of economic literature identifies technological advancement as a primary determinant of 
increasing healthcare expenditures. Building upon the seminal work of Newhouse (1992), researchers have 
extensively investigated this relationship. The adoption and rapid diffusion of medical technologies are 
widely recognized as key drivers of expenditure growth (Cutler & McClellan, 1998; Newhouse, 1992; 
Okunade & Murthy, 2002; Weisbrod, 1991), with estimates attributing between 30% and 70% of cost 
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increases to novel technologies (Australian Productivity Commission, 2005; Barros, 1998; Congressional 
Budget Office, 2008; Pestieau, 2006). Empirical evidence suggests that spending growth exhibits a stronger 
correlation with the introduction of innovative, high-cost technologies than with the escalating costs of 
existing treatments (Cutler & McClellan, 1996; Cutler et al., 1998). 

While some scholars, including Berndt et al. (2002), Cutler (2004), and Lichtenberg (2014, 2016, 2017), have 
demonstrated that even costly innovations can yield significant improvements in survival rates and overall 
health outcomes, a more nuanced perspective is warranted. Cutler, Rosen & Vijan (2006) concluded that 
healthcare spending prior to 1960 generally represented a judicious allocation of resources, whereas 
expenditures on the older population after 1980 incurred exceedingly high costs per life-year gained. 
Furthermore, Skinner & Staiger (2015) emphasize that even subtle variations in technology adoption 
patterns can exert a substantial influence on outcomes and productivity, particularly in instances where 
innovations exhibit cost-effectiveness. 

The Organization for Economic Co-operation and Development (OECD) has similarly observed that 
technological advancements contribute to escalating healthcare costs (OECD, 2017). New technologies not 
only command higher prices but also tend to expand the volume of services provided rather than merely 
substituting for existing procedures, thereby sustaining expenditure growth. Since the 1970s, healthcare 
spending in OECD countries has grown at a rate exceeding GDP growth by 2%, with healthcare accounting 
for 17.6% of GDP in the US in 2023. Projections indicate that this figure may approach 20% by 2032. 
Research from the Kaiser Family Foundation has further revealed that greater availability of medical 
technologies is frequently associated with heightened utilization rates and increased healthcare spending 
(Kaiser Family Foundation, 2007). For instance, an increase in the number of MRI units has been correlated 
with higher utilization and spending on diagnostic imaging services. Moreover, the integration of new 
technologies into healthcare systems often necessitates substantial upfront investments and can lead to 
increased operational costs. 

Although these technologies hold the potential to enhance patient care and outcomes, they concurrently 
contribute to the overall rise in healthcare expenditures. However, scholarly work by Becker (2007), Becker, 
Philipson & Soares (2005), Murphy & Topel (2003), and Nordhaus (2002) suggests that the economic 
benefits accruing from increased life expectancy and improved health status outweigh the costs associated 
with technological investment. From this vantage point, the economic value of health innovation appears to 
supersede its financial burden. Nevertheless, the challenges of overuse and inefficiencies in the adoption of 
new technologies remain salient. 

According to Chandra & Skinner (2012) and Skinner & Staiger (2015), the health benefits derived from 
technological adoption are contingent upon the cost-effectiveness of individual innovations. Not all 
technologies yield proportional gains in outcomes or efficiency (Cutler, 2004). Chandra & Skinner (2012) 
proposed a framework categorizing technologies into (1) universally effective innovations offering high value 
at low cost (e.g., antibiotics); (2) targeted, high-cost innovations that are efficient when properly applied (e.g., 
angioplasty); and (3) marginally effective technologies incurring high costs with limited benefits (e.g., proton 
beam therapy for prostate cancer). 

The inherent difficulties in evaluating cost-effectiveness, coupled with the often-generous reimbursement 
models prevalent in both public and private healthcare systems, have contributed to the widespread 
diffusion of technologies based on novelty rather than demonstrated value. As technology simultaneously 
stimulates supply (by offering new treatment options) and demand (particularly when patient costs are 
subsidized), it frequently drives up total expenditures in ways that may not be commensurate with 
improvements in patient outcomes. To ensure the long-term sustainability of healthcare systems, it is 
imperative to rigorously assess the clinical value of treatments, particularly in the context of aging 
populations and escalating healthcare needs. Rigorous evaluation tools—such as clinical trials, health 
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technology assessments, cost-effectiveness analyses, and real-world evidence—are indispensable for 
understanding the population-level impact of innovations and guiding optimal resource allocation. The 
OECD (2017) has observed that the cost-effectiveness of new medical technology has diminished over the 
past century, with rising prices and declining incremental benefits. 

In the context of emerging digital technologies, the central question revolves around whether these 
innovations offer not only the promise of improved outcomes but also enhanced efficiency. AI-driven 
diagnostics, remote monitoring, and predictive analytics have the potential to streamline clinical 
decision-making, reduce unnecessary hospital admissions, and optimize the utilization of medical resources, 
thereby potentially alleviating the financial burden on both healthcare systems and patients. However, the 
realization of these cost-saving benefits is not guaranteed. The deployment of such technologies necessitates 
thoughtful planning, robust infrastructure, and regulatory oversight to ensure that efficiency gains do not 
compromise equity, access, or quality. Without deliberate policy interventions, there exists a tangible risk that 
innovation could exacerbate existing disparities rather than ameliorate them. 

Empirical research tackling this issue has followed several methodological directions. One widely used 
approach involves macro-level observational and econometric analyses that correlate aggregate digitalization 
indicators with national health spending outcomes. For instance, Ndubizu et al. (2011) analyzed data from 
148 countries to examine how internet and personal computer use influenced healthcare expenditures in 
both public and private healthcare sectors, highlighting that the impact of digital infrastructure on health 
costs is not uniform but is instead significantly mediated by institutional features such as corruption and 
investor protections. Building on this international perspective, Kuzior et al. (2024) utilized panel regression 
models for 31 European countries to quantify the influence of digital determinants, such as internet access 
and innovation indices, on public health indicators and some aggregate expenditure measures. Although 
their primary dependent variables included life expectancy and self-rated health status, their application of 
macro-panel data reflects the field's increasing ability to capture system-level digital impacts. 

Complementing these observational studies are simulation-based and cost-benefit analyses, which are 
particularly prominent in European research consortia. Stroetmann et al. (2007) conducted cost-benefit 
analyses of ten e-health applications implemented in various European countries, reporting that positive net 
benefits materialized over an average of five years—a timeline that highlights the necessity of medium- to 
long-term investment perspectives when assessing digitalization efforts. Notably, the return on investment 
varied by intervention, taking as little as two years for teleradiology and as long as seven years for national 
electronic patient records. Zamora (2012) advanced this approach with an international impact assessment 
of telehealth for chronic conditions, applying break-even modeling to assess when hospitalization savings 
would offset daily monitoring costs and synthesizing evidence from leading country exemplars such as the 
UK and Italy. 

At the national level, risk-oriented and simulation models further illuminate the financial implications of 
digital medicine. Sendek (2014), focusing on Slovakia, integrated both empirical data and projected financial 
scenarios to estimate the ten-year net present value of an e-health system encompassing EHRs, 
e-prescribing, e-referrals, and a national health portal. Cumulative projections suggested notable 
system-wide savings, but the specificity to one country and focus on conventional e-health functions limited 
the generalizability to broader definitions or international contexts. In a more recent contribution leveraging 
quasi-experimental techniques, Han et al. (2023) examined the effect of China's Broadband policy on 
healthcare expenditures using a difference-in-differences approach. Their analysis of microdata from 2010 to 
2018 found that digital infrastructure investment was associated with an 18.8% reduction in healthcare 
spending among urban populations in pilot cities, with mechanisms likely related to improved insurance 
access and greater efficiency. While powerful, such single-country analyses emphasize the contingent nature 
of outcomes and their dependence on policy context. Similarly, studies from England utilizing randomized 
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controlled trials have evaluated the cost-effectiveness of telehealth and telecare at a system level, finding only 
limited evidence for cost savings without more integrated service redesign (Henderson, 2018). 

To synthesize and interpret the economic evidence at a broader scale, recent reviews and meta-analyses have 
aggregated cost-effectiveness data across multiple digital health interventions. Shah (2024) employed a 
mixed-methods and random-effects meta-analytic approach, pooling incremental cost-effectiveness ratios 
(ICERs) and benefit-cost ratios (BCRs) from global studies examining telemedicine, AI-health, and 
EHR-related interventions. While these reviews highlight both potential efficiency gains and challenges 
related to equity and access, most do not provide direct quantitative projections of macro-level health 
expenditure impacts. Sülz et al. (2021) conducted a scoping review of economic evaluations supporting 
independent living among older people, cataloging the range of direct and indirect cost categories 
considered. However, the review focused primarily on intervention-level analyses and did not attempt to 
quantify system-wide expenditure effects or offer forward-looking projections. Policy and modeling 
frameworks, such as those put forth in Codagnone et al. (2011), underline the urgent need for more 
sophisticated system dynamics and microsimulation methods to bridge the gap between conceptual benefit 
and validated macroeconomic impact—an agenda further complicated by persistent data and definitional 
limitations. 

Finally, the study by Sapanel et al. (2025) offers an innovative approach to addressing the growing concern 
over rising healthcare costs driven by the integration of digital technologies. Focusing on digital therapeutics 
(DTx)—software-based medical interventions—the authors present a comprehensive examination of the 
factors that influence the economic value of DTx, which are software-based medical interventions designed 
to treat or manage a variety of health conditions. In the context of escalating global healthcare costs, aging 
populations, and increasing burdens of chronic disease, DTx technologies hold significant promise for 
improving health outcomes while potentially containing costs. However, their widespread adoption is 
hindered by the need for robust evidence demonstrating their clinical efficacy and economic value. This 
article employs a group concept mapping (GCM) methodology to capture the collective perspectives of 62 
stakeholders—including healthcare professionals, researchers, industry leaders, and public policy 
experts—across all stages of the DTx lifecycle, from development and validation to implementation and 
commercialization. The research identifies 59 specific factors grouped into eight thematic clusters that are 
perceived to impact DTx economic value. These clusters span early development stages, pre-implementation 
planning, and real-world deployment. Stakeholders identified two clusters—DTx Impact on Patient 
Outcomes and DTx Implementation—as the most critical drivers of economic value, though notably, the 
DTx Associated Costs and DTx Monetization Models clusters were underappreciated in actual 
decision-making practices, particularly among researchers. This gap suggests a misalignment between what is 
considered important for DTx success and what is addressed during development and implementation. The 
study introduces a conceptual framework that visually maps these clusters, illustrating that factors 
influencing DTx value are multidimensional and distributed throughout the product lifecycle, thus requiring 
integrated attention from all stakeholders. It also highlights the divergence of perspectives across stakeholder 
types; for instance, public sector respondents placed a higher emphasis on technology considerations and 
overall economic impact than their industry counterparts. Moreover, researchers often focused primarily on 
early development issues while underestimating the importance of costs and monetization 
strategies—factors that are crucial for achieving market viability. This discrepancy underscores a structural 
weakness in the current development pipeline for digital health technologies, where insufficient early 
attention to economic factors can limit eventual adoption and reimbursement. The article suggests that 
bridging this gap will require interdisciplinary collaboration, particularly involving public-private 
partnerships, to integrate commercialization expertise earlier in the innovation cycle. From a methodological 
standpoint, the use of GCM enabled the authors to create a shared conceptual space where diverse 
stakeholders could articulate and organize complex ideas. This participatory and structured approach yielded 
not only thematic insights but also a go-zone analysis that identified priority clusters: those that are both 
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highly important and under-considered in current practice. These insights are critical for informing the 
policy and strategic frameworks that underpin investment in digital health, especially as healthcare systems 
worldwide confront increasingly constrained resources and seek high-value interventions. The study’s 
implications extend beyond DTx to the broader question of how new healthcare technologies can be 
designed, evaluated, and implemented in ways that maximize their contribution to health system 
sustainability. Given the high costs associated with chronic disease management and the inefficiencies in 
traditional care delivery models, digital therapeutics represent a potentially transformative 
solution—provided they are developed with a clear understanding of the economic value drivers across 
diverse health system contexts. The article, therefore, contributes significantly to the emerging literature on 
the economic assessment of digital health and underscores the importance of early, multidimensional 
evaluation frameworks that align technological innovation with real-world health system needs and priorities. 

Overall, the current literature reveals that while digital medicine interventions are frequently associated with 
increased short-term costs due to infrastructure, training, and transition requirements, the realization of net 
system-level savings is conditional upon comprehensive and integrated implementation, favorable 
institutional environments, and sufficient time horizons. Causally robust, globally comparative analyses 
remain rare, and effects are often highly heterogeneous by country, intervention, and adoption context. The 
field continues to move toward richer empirical designs—incorporating quasi-experimental natural 
experiments, large-scale panel data, and meta-analytic syntheses—but the balance of evidence remains 
cautious regarding immediate and universal cost-saving claims. 

Furthermore, despite this growing interest in the macro-level economic impacts of digital medicine, several 
key research gaps remain. Existing studies frequently rely on proxies for digital adoption and predominantly 
employ observational designs, limiting the ability to make robust causal inferences about the effect of digital 
medicine on health expenditures at national or global scales (Ndubizu et al., 2011; Kuzior et al., 2024). While 
some recent single-country analyses utilize quasi-experimental approaches to strengthen causal claims Han 
et al. (2023), there remains a lack of comparative, harmonized studies across diverse health systems, 
particularly in low- and middle-income countries (Stroetmann et al., 2007; Ndubizu et al., 2011; Zamora, 
2012; Kuzior et al., 2024). Furthermore, the mechanisms through which digital medicine influences health 
expenditure—such as reductions in hospitalizations versus rising demand from improved access—are not 
fully elucidated, especially in contexts of partial or fragmented digitalization (Sülz et al., 2021; Han et al., 
2023). Although simulation and projection models anticipate long-term cost savings, these claims are rarely 
validated using longitudinal real-world data, and short-term cost increases are commonly observed (Zamora, 
2012; Sendek, 2014). Many studies also face challenges in measurement, often utilizing broad or indirect 
indicators of digital health and lacking advanced macroeconomic modeling frameworks (Ndubizu et al., 
2011; Kuzior et al., 2024; Codagnone et al., 2011). Finally, the equity implications of digital medicine 
adoption remain underexplored at the macro level, with limited evidence regarding how digital health may 
reduce or exacerbate disparities in health spending across populations (Sülz et al., 2021; Han et al., 2023). 
Addressing these gaps will require the application of stronger causal methods, the development of specific 
and standardized adoption indicators, the expansion of research to underrepresented regions, rigorous 
model validation, and systematic analysis of the mediating pathways and distributional consequences of 
digital health interventions. 

10. Conclusions 
The digital transformation currently underway in healthcare marks a critical juncture in the evolution of 
health systems, with implications that extend far beyond the adoption of individual technologies. Unlike 
previous waves of medical innovation—such as the development of antibiotics, imaging technologies, or 
minimally invasive surgery—which followed relatively linear trajectories and were integrated over decades, 
the present era is characterized by the rapid and widespread introduction of digital tools. These include 
artificial intelligence, big data analytics, wearable biosensors, telemedicine platforms, and personalized 
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genomics. Together, they are reshaping not only how care is delivered and organized but also how it is 
conceptualized, measured, and experienced by both patients and providers. 

For all healthcare systems, this digital disruption presents a dual reality. On the one hand, it offers the 
potential to dramatically improve health outcomes through earlier diagnosis, more accurate treatment, and 
better patient engagement. Digital tools can also enable more efficient use of resources, support population 
health management, and enhance system resilience in the face of growing demand and workforce pressures. 
On the other hand, these same technologies pose significant risks and challenges. Concerns over data 
privacy, algorithmic bias, transparency, and uneven access raise urgent ethical and operational questions. 
Furthermore, many digital solutions have not yet demonstrated consistent clinical effectiveness, nor have 
they been thoroughly evaluated for their economic and social impacts. 

A central conclusion of this analysis is that the existing structures for assessing, regulating, and scaling health 
technologies are not fully equipped to handle the complexity and speed of digital innovation. Traditional 
health technology assessment (HTA) frameworks, which rely heavily on controlled trial data and long 
evaluation timelines, are often ill-suited for dynamic, iterative technologies that evolve post-deployment. 
Similarly, static regulatory models struggle to keep pace with the adaptive nature of machine learning 
algorithms and the global distribution of digital health platforms. 

To navigate this shifting landscape, healthcare systems must adopt more flexible, responsive, and 
anticipatory approaches. This includes updating HTA methodologies to incorporate real-world evidence, 
patient-reported outcomes, and qualitative measures of user experience. It also involves developing 
regulatory mechanisms that can accommodate continuous updates and enable responsible innovation 
without compromising safety and equity. At the same time, investments in digital infrastructure, workforce 
training, and institutional capacity are essential to ensure that technological benefits are not concentrated in 
a few areas but are distributed equitably across regions and populations. 

Crucially, digital transformation should not be understood as a purely technical evolution. It represents a 
broader governance challenge that requires coordinated action across policy, clinical practice, ethics, and 
public engagement. If approached strategically, digital technologies can serve not only to modernize care but 
also to reorient health systems around values of inclusivity, transparency, and sustainability. 

In conclusion, the digital disruption of healthcare is both inevitable and transformative. The challenge for 
the healthcare systems—and health systems globally—is to ensure that the pace of innovation is matched by 
the development of governance structures capable of harnessing its benefits while mitigating its risks. This 
calls for a shift in mindset: from passive adoption to proactive stewardship, from fragmented initiatives to 
systemic integration, and from reactive regulation to anticipatory strategy. Only through such an approach 
can digital medicine become a driver of not just better care but better health systems. 

More critically, policy discussions should shift from justifying rising expenditures to exploring alternative 
resource allocations. Would investing in education, prevention, or lifestyle interventions yield better health 
outcomes than expanding high-cost medical treatments? The key question should no longer be “Has 
increased spending been worth it?” but rather “Could we achieve greater value by reallocating resources?” 
This debate is particularly relevant given fiscal constraints, demographic shifts, and rising societal 
expectations for better healthcare. Answering this requires a robust economic framework to evaluate the 
impact of medical research and innovation on mortality and morbidity —one that is grounded in strong 
multidisciplinary partnerships across health economics, clinical and technological research, public health, 
and policy analysis to ensure comprehensive and actionable insights. 
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