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Abstract

This paper studies competition among firms connected in an

input-output network, where firms have multilateral market power,

that is, they can potentially affect prices both on input and output

markets, to an extent that is endogenously determined. In equilib-

rium, the price impact is proportional to the number of cycles in

the network whose links measure the strenght of the input-output

connection across each good pair. Considering multilateral market

power affects the model’s predictions in two key areas: the quantifi-

cation of distortions due to market power, and the evaluation of the

welfare impact of mergers.
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Introduction

Who has stronger market power in a production network? This question

is connected with fundamental questions such as the welfare evaluation of

mergers, the quantification of distortions due to market power, the response

of the economy to shocks. In this paper, I argue that, to properly answer

the question, it is important to use models were firms are allowed to have

multilateral market power, that is they can potentially affect prices both

on input and output markets.

Recent papers find input market power to be sizable, both domestically

(Morlacco (2019), Dhyne et al. (2022)), and in international trade (Alviarez

et al., 2023). However, with the exceptions noted in the literature, most

customarily used models of firm-to-firm trade impose the simplifying as-

sumption that firms are price-takers on the input markets. In this paper,

I study a strategic non-cooperative model of large firms interacting in an

input-output network consisting of many specific supply-customer relation-

ships. Firms trade using a double auction for each good, as in models of

the financial market (Malamud and Rostek, 2017).

The main contributions of the paper are two. First, I show that with

Leontief technology the game in schedules has a unique linear equilibrium.

Then, I explore the connections between the network and the equilibrium

markups and markdowns: there is an appropriate weighted network con-

necting the goods of the economy, the goods network, such that the markups

and markdowns can be seen as a measure of centrality with respect to this

network. Second, I explore what are the implications of multilateral market

power. To do so, I compare the equilibrium of the benchmark model with a

modified model where firms are price-takers on inputs, and a version where

firms take as given all the prices of markets they are not directly involved

in. When firms take some prices as given, the distortions due to market

power are lower: the equilibrium price impacts are lower, and the final

price is also lower.

Formally, firms have a set of input goods, and produce each an output:

some outputs are the input of other firms and these trade relationships, or

input-output links, are exogenous. Firms play a simultaneous game in which

the available actions are supply and demand schedules, relating quantities
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of the traded goods to prices: as in a uniform-price double auction, the re-

alized price on every trade relationship is the one where demand and supply

cross. The classic metaphor for the price-taking general equilibrium behav-

ior is that a “walrasian” auctioneer proposes prices and collects supply and

demand “bids”, until all markets clear. The approach followed in this pa-

per takes this metaphor one step further, applying it to non-infinitesimal

firms. The auctioneer acts as a market maker in financial markets, col-

lecting firms’ conditional schedules. Firms, being non-infinitesimal, fully

internalize the mechanism and submit their schedules to affect prices in

their favor.1

Section 2 introduces the model. The technological assumption is that

intermediate inputs are perfect complements. The assumption on labor

generalizes slightly the Leontief functional form, allowing the quantity of

labor to depend quadratically on the output quantity. I do so for two rea-

sons: first, it simplifies the conditions under which an equilibrium exists;

second, this technology recovers as a special case the standard quadratic

cost function often used in models with no vertical connections (e.g. Klem-

perer and Meyer (1989), Pellegrino (2025)).

In the main text I assume that firms directly choose linear schedules

that, under the technology constraint, boils down to assuming that firms

choose a single number, representing the slope of the supply schedule. The

equilibrium cannot be computed analytically, but the game so defined has

many useful properties that make it tractable: it is a supermodular poten-

tial game. Theorem 1 shows that this game has a unique equilibrium for

very general networks, provided any good is traded by at least three agents

(which may be two firms and the consumers). This is a classic condition

for the existence of the linear equilibrium in models of competition in sup-

ply functions (Malamud and Rostek, 2017). In the Appendix ?? I show

that the same profile of linear schedules indeed arises in equilibrium2 in a

model where there are uncertain cost parameters of firm’s technology, and

schedules have to be chosen before the realizations.

1This competition in schedules is meant not as a literal description of the workings
of the market (although they are in some cases, e.g. the electricity or financial markets),
but as an abstraction of a bargaining procedure, parsimonious but powerful enough for
the complexity of the problem.

2By which I mean that the best response over all feasible schedules is linear.
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Section 4 define the goods network, and characterize the connection

between market power and the network. In such a network, the nodes

are the goods, and two goods are linked if some firms trade both goods.

The strength of a link. The equilibrium prices are proportional to the

centrality in such a network, as is common in network models. What is

more interesting, and specifically connected to market power, is that also

the price impacts have a network interpretation: for example, the price

impact of firm i on its output is proportional to the (weighted) number of

cycles in the goods network, excluding firm i. This is because the network

affects the price impact via the pass-through of prices: the number of cycles

measures the strength of the pass-through effect.

In the special case of the Supply chain with layers, all the effects can

be precisely characterized: we obtain that, in the homogeneous situation

where all layers have the same size and number of firms, the markup (and

the price impact on the output) is larger for the more upstream firm (the

farther from the consumer), while the markdown is larger for the more

downstream firm (the closer to the consumer).

Section 5 generalizes the model, allowing general price impact func-

tions satisfying the technical condition that they must be decreasing (in

the positive semidefinite sense) in the slopes of the schedules. This defines

a “Generalized SDFE”, that encompasses as special cases several stan-

dard models: from the classic Cournot and Bertrand oligopoly (without

input-output dimension) to the sequential monopoly a la Spengler (1950).

Moreover, Theorem 3 shows that if one takes the benchmark SDFE and

imposes the assumptions that (i) firms take input prices as given (which

I call unilateral market power) and (ii) firms take as given all prices of

markets where they are not directly involved in (local market power, also

these two models are Generalized SDFE for the proper choice of the price

impact function.

Theorems 2 and 3, together, constitute the main result of the paper:

the description of the implications of multilateral market power in constrast

with, in the above terminology, unilateral and local market power. Theorem

2 exploits that the game still is a supermodular game to prove existence,

and to show the main comparative statics: if the price impact function

is larger (in the positive semidefinite sense), the equilibrium slopes are
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smaller. Theorem 3 shows that both with unilateral and local market

power the price impacts are smaller. As a consequence, the final price is

smaller under these two assumptions.

The intuition is as follows. If a firm does not internalize some reactions

in the network, this amounts to that firm perceiving a larger elasticity of

demand and supply and, as a consequence, being able to charge smaller

markups and markdowns. This is because, in the S&D equilibrium, the

elasticity of demand depends on the schedules chosen by directly connected

firms, but also indirectly connected firms. The reason is that, in equilib-

rium, a change in a price triggers a change in all other prices of connected

firms: failing to account for some of these pass-through effects means firms

perceive a different elasticity of demand.3

Multilateral market power does not only have a global effect, but also

changes the balance of market power among firms. Proposition 2 illus-

trates this effect for the supply chain with layers. When market power

is multilateral, as described above, all the layers are symmetric. Instead,

with unilateral market power, the upstream layers have larger markup and

profit than the downstream layers. So, the amount of surplus extraction

predicted by the model is very different.

These considerations suggest that models that impose restrictions on

which prices a firm can affect are not innocuous, and must be taken with

care, especially if these assumptions are just a simplifying modeling device,

rather than coming from specific timing of the market mechanism. This

is typically true of models of general input-output networks that connect

many firms that are very heterogeneous in terms of the nature of their

processes and products, and so very specific assumptions on which prices

firms can or cannot control (or specific timing assumptions) are harder to

justify.

Related literature

This paper contributes to three lines of literature: the literature on com-

petition in supply and demand functions, the literature on production

3The literature on outsourcing and endogenous supply chains provides evidence that
firms are aware of their supply chain and take its structure and their position in it into
account in their decisions, see e.g. Berlingieri et al. (2020), Alfaro et al. (2019).
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networks or networked markets, and the literature on general equilibrium

oligopoly.

My contribution to the literature on competition on supply and de-

mand functions is to introduce the technique to the modeling of general

equilibrium oligopoly, in particular with firm-to-firm trade. The literature

has studied the situation where the demand firms receive comes from a

network structure with a large dimension of uncertainty, in Wilson (2008),

Holmberg and Philpott (2018), Ruddell (2018a), Ruddell (2018b), but their

firms only supply to a node in the network, do not trade among themselves.

Firm-to-firm trade is studied in a bilateral setting in Weretka (2011) and

Hendricks and McAfee (2010), always constraining the schedules to a para-

metric functional form. In the finance literature the model is used to study

simultaneous demand and supply of heterogeneous assets: Malamud and

Rostek (2017) show how the strategic complementarity property extends to

the network setting, and characterizes an equilibrium in a general network.

The model has a different purpose (studying centralization in financial

markets) and also two important technical differences: in my paper the

functional form is different, because the Leontief technology gives a differ-

ent best reply equation: the difference is important, because it is crucial in

obtaining uniqueness of the equilibrium. Moreover, I study the Generalized

SDFE version with general price impacts. Rostek and Yoon (2021a), Ros-

tek and Yoon (2021b) and Rostek and Weretka (2012) also analyze similar

models, and share the same differences with my work. Ausubel et al. (2014)

and Woodward (2021) study uniform-price (among other) auctions in the

context of centralized auctions. Vives (2011) studies market power arising

from asymmetric information, rather than network position.

My contribution to the production networks literature is to provide a

model of competition in an input-output network in which all firms have

market power on both input and output markets, and are fully strategic

internalizing their position in the supply chain. Many models explicitly

assume that firms have power to decide/affect prices only on one side of the

market. To this class belong the workhorse sequential oligopoly games in

Salinger (1988), Ordover et al. (1990), Hart et al. (1990).4 In another class

of models authors assume that output prices are equal to the marginal cost

4And used in classic textbook treatments, such as Tirole (1988).
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times a markup. The concept of the marginal cost itself implicitly implies

price-taking in the input market: indeed, it arises from the price-taking

cost minimization problem of the firm. Hence, it is implicitly assuming

unilateral market power. To this category belong Grassi (2017), Bernard

et al. (2022), Baqaee (2018), Baqaee and Farhi (2019), Baqaee and Farhi

(2020), Magerman et al. (2020), Dhyne et al. (2022), Huneeus et al. (2021),

Arkolakis et al. (2021), Pasten et al. (2020), Pellegrino (2025). A third class

of models are those where vertically connected firms share surplus via some

form of Nash bargaining. Toxvaerd (2024) reviews the recent work in the

area, in the context of a vertical chain. Acemoglu and Tahbaz-Salehi (2025)

and Alviarez et al. (2023) apply this idea to general networks. My results

complements theirs, providing a model that does not rely on the choice of

exogenously specified bargaining weights.5 More in general, many models

of networked markets have studied the network defined by the demand:

Galeotti et al. (2024), Pellegrino (2025), Bimpikis et al. (2019), but they

do not focus on input-output connections.

Except for Acemoglu and Tahbaz-Salehi (2025), all these papers feature

also the implicit or explicit assumption that firms do not internalize the

effect of their decisions on sectors/firms further downstream beside the

direct customers. Sometimes this is a consequence of the assumption of a

continuum of firms in each sector (and so sector-level aggregates are taken

as given by every individual firm),6 other times it is explicitly assumed.7

I contribute to the literature on general equilibrium with market power

by providing a fully strategic model of the production side with endoge-

nous market power and firm-to-firm trade; furthermore, the game does not

depend on price normalization, and can incorporate general assumptions

on owner’s preferences as in Azar and Vives (2021). In the recent literature

on “general oligopolistic competition” (Azar and Vives (2021), Azar and

Vives (2018) and Ederer and Pellegrino (2022)) do not consider firm-to-firm

trade.

5The papers also differ from mine in other dimensions: Alviarez et al. (2023) study
buyer-seller, rather than input-output connections; Acemoglu and Tahbaz-Salehi (2025)
is a model of endogenous exit: in the benchmark with no exit, the equilibrium is efficient,
unlike in my model.

6This is the case in, e.g. Baqaee (2018) and various others listed in the literature.
7E.g., in Grassi (2017), Dhyne et al. (2022).
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U

D

Consumers

Figure 1: A simple supply chain with two layers: U and D.

The rest of the paper is organized as follows. Section 2 defines the

benchmark model, the Supply and Demand Function Equilbrium (SDFE).

Section 3 describes the solution and the existence theorem. Section 4 shows

the characterization of markups and the connection with the goods net-

work. Section 5 introduces the Generalized SDFE, and explores the effect

of multilateral market power. Section 6 concludes. The proofs are in the

Appendix.

1 A simple example

In this section we illustrate the model and the main take-aways in a the

simplest network where the concept of multi-lateral market power is non-

trivial: a supply chain consisting of one intermediate producer, U , and

a final good producer D. This is represented below in Figure 1. The

intermediate good producer U produces good U using only labor, and sell

it to the final producer D. In turn, the final producer D uses good U to

produce the final output D. The consumers consume both goods U and D.

Consumers have linear demands for both goods that, for simplicity, is

linear with slope normalized to 1, and the goods are neither substitutes nor

complements:

Dc,D(pD) = A− pD

Dc,U(pU) = A− pU

The firms have linear technology, producing one unit of output for any
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unit of input: FU(qU) = qU and FD(qD) = qD. So, firms profits, when the

realized prices are pD, pU , are:

πU =pUqU (1)

πD =(pD − pU)qD (2)

The firms play a simultaneous game in which the strategic variables

are the (slopes of the) linear schedules connecting prices and quantities.

Formally:

1. firm U submits a function SU(pU) = BUpU , where BU is any positive

real number;

2. firm D submits a function

SD(pU , pD) = BD(pD − pU)

indicating both its supply of output, and its demand for the input,

where BD is, again, any positive real number.

Whichever choice of the firms, the prices pU , pD and quantities qU , qD

must satisfy the market clearing conditions:

qD = A− pD = BD(pD − pU) (3)

qU = A− pU +BD(pD − pU) = BUpU (4)

A wide variety of allocations realize for different choices of schedules.

For example, perfect competition is the special case in which BU and BD go

to infinity. Indeed, it turns out that in this example welfare is increasing in

both slopes. We want to extract predictions on firms behavior by looking

for a Nash equilibrium of the game in schedules, in which firms aim to

maximize profits.

Focus on firm U . For each fixed quantity of output qU , we can solve the

above system for the inverse demand:

pU,U(qU) =

(
1 +

BD

BD + 1

)−1

(A− qU)
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and similarly for the inverse demands faced by firmD, that we call pD,U(qD)

and pD,D(qD). When taking the FOC for firm U , we get:

∂

∂BU

πU =
∂qU
∂BU

(
pU + qU

∂pU,U
∂qU

)
= 0

From the market clearing conditions it is easy to conclude that
∂qU
∂BU

> 0,

and so the FOC are equivalent to: pU + qU
∂pU,U
∂qU

= 0. Doing the analogue

for firm D, we obtain the equilibrium equations:

pU + qU
∂pU,U
∂qU

= 0 (5a)

pD − pU + qD

(
∂pD,D

∂qD
− ∂pD,U

∂qD

)
= 0 (5b)

Since schedules are linear, the derivatives are just constants: so, it is

immediate to write the best response schedules as:

SU(pU) =

(
−∂pU,U

∂qU

)−1

pU

SD(pD, pU) =

(
∂pD,D

∂qD
− ∂pD,U

∂qD

)−1

(pD − pU)

So, the slopes B∗
D, B

∗
U that constitute an equilibrium of the game must be

equal to the slope of the above functions, and satisfy:

B∗
U =

(
−∂pU,U

∂qU

)−1

= 1 +
B∗

D

B∗
D + 1

B∗
D =

(
∂pD,D

∂qD
− ∂pD,U

∂qD

)−1

=

(
1 +

1

B∗
U

)−1

. (6)

The expression highlights the role of the price impacts, and in particular,

the fact that firm D has price impact on both the input and the output

market. The equations can be solved analytically, and it can be checked

that the solution is: B∗
D = 1/

√
2, B∗

U =
√
2.

What happens if firm D is a price-taker on the input market? In that

case the choice of D does not effect the input price,
∂pD,U

∂qD
= 0, and so the
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equilibrium equations (6) become:

B∗∗
U = 1 +

B∗∗
D

B∗∗
D + 1

B∗∗
D = 1.

Moreover, this solution is the same we would get solving the model as a

standard sequential monopoly, as shown in Section REFERENCE. The

solution in this case is B∗∗
D = 1, B∗∗

U = 3/2. They are both higher than in

the case of multilateral market power. So, we can immediately conclude

that consumer welfare is higher in this case.

In the rest of the paper, we explore how this insight generalizes to arbi-

trary networks, and we illustrate examples how taking multilateral market

power into account can change the model conclusions on the welfare impact

of mergers and diffusion of shocks.

So, in a sense, both firms set their “optimal price” on the U , D link.

This seems a contradiction, since sellers would want to raise pU while buyers

would want to decrease it. The tension is resolved by the fact that here firms

“implement” a price by modifying the slope of their schedule that, in turn,

changes other firms’ incentives to raise prices. The situation is represented

graphically in Figure 2: firm U faces a residual demand Dr
U(pU), that is

the blue line in the graph, depending on the slope of consumers and the

slope chosen by D. This residual demand induces a profit as a function

of the price pU . Firm U wants to charge p∗U , the monopoly price for this

residual demand, and so sets a slope that achieves that price: this is the

red line in Figure 2a. But, in doing so, it affects the slope of the residual

supply that firm D faces. As a consequence, firm D changes their choice of

schedule, changing the transaction price to (p∗U)2, the optimal monopsony

price for firm D. This, in turns, leads to a new residual demand and a

new profit function for firm U (as in Figure 2b): as a consequence, the

previous optimal price p∗U is not optimal anymore, and firm U adjusts its

slope again. This adjustment process continues until the slopes are such

that the optimal price sellers want to charge is equal to the optimal price

for the buyers.

10



price

quantity

Market for good U

Residual
demand

p∗U

Best reply of U

(a)

price

quantity

Market for good U

Best reply of U

Best reply of D

(p∗U)2

(p∗U)3

(b)

Figure 2: Graphical representation of the choice of schedule by firm U . On
the left (a): the best reply for firm U to the residual demand given by the
blue line. On the right (b): the optimal choice of firm U leads other firms
to adjust, modifying firm U residual demand and optimal price: so firm U
further adjusts its best reply.

2 The model

In this section I introduce the primitives of the model, that are the firms and

their technology, the input-output network, and the utility of the consumer,

and then define the game played by the firms.

2.1 Setting

Firms and Production Network There are n firms andm goods: their

sets are respectively denoted N and M. Each good might be produced by

more firms, but each firm produces only one good. Each firm produces

using labor and a set of inputs produced by other firms, which I denote

as N in
i . Denote the set of all goods traded by firm i as Ni = N out

i ∪ {i}.
The consumers’ utility depends directly on a subset of goods, denoted C ⊆
M. Firms, goods and the connections defined above define a directed

bipartite graph G = (N ,M, E), where E ⊆ (N ∪M)2 is the set of existing

connections. I refer to G as the input output network of this economy. If

11



(i, g) ∈ E means that firm i produces good g, and (g, i) means that firm i

needs good g for production. For brevity, I write i → g in the former case,

and g → i in the latter .

Notation I denote dini = |N in
i | the in-degree (number of intermediate

inputs) of firm i, excluding labor, and di = dini +1 the total degree (number

of goods traded). We use the wage as the numeraire: the price of good g

in labor terms is denoted pg. Bold symbols are used to denote vectors: p

is the vector of all prices (always in labor terms), while pin
i = ((pg)g∈N in

i
)

are the prices of all input goods of firm i, and similarly pouti is the price of

the output, so that p′
i = (pouti , (pin

i )′). Similarly, pc = (pg)g∈C is the vector

of prices of goods consumed by the consumer.

For quantities, it is understood that positive quantities represent out-

puts and negative quantities represent inputs. So, the vector of input and

output quantities traded by firm i is qi = (qi,−qin
i ), where qin

i = (qig)g→i

is the vector of input quantities. The quantity of labor used by firm i is ℓ̃i.

For a firm choosing quantities qi, ℓ̃i, the profit is:

Πi = p′
iqi − ℓ̃i

where note that the wage is 1, because all prices are expressed in labor

terms.

If M is a matrix, [M ]−i denotes the same matrix to which the rows and

columns relative to input and output goods of good i have been removed.

If b is a vector, b−i denotes the same vector to which element i has been

removed.

Consumers The utility function of the consumers is quadratic in con-

sumption and (quasi-)linear in the disutility of labor L:

U(c, L) = A′B−1
c c− 1

2
c′B−1

c c− L (7)

where c = (cg)g∈M is the vector of quantities consumed, Ac is a vector, and

Bc is a symmetric positive definite matrix. This means that the consumer

demand has the form: Dc = A−Bcpc.
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Technology Intermediate inputs are perfect complements, so that to pro-

duce a quantity of output qi firm i needs fihqi units of input h are needed.

We denote F ∈ Rm×m
+ the matrix that collects the fgh. For the technology

to be viable, we adopt the standard assumption that there must exist a

positive quantity vector q such that qi >
∑

h fhiqh.We slightly generalize

the Leontief technology to allow decreasing returns in labor, so that: to

produce qoutg units of output the firm needs ℓ̃g = fg,Lq
out
g +

1

2kg
(qoutg )2 labor

units. We do this because, as illustrated below, the decreasing returns in

labor facilitate the existence of a non-trivial equilibrium. So, if ki → ∞, the

technology becomes the standard Leontief one; if ki < ∞, it comes from a

variation of the Leontief production function, illustrated in REFERENCE.

We can write the technology constraints of firm i as:

qij = fijqi ∀j ∈ N in
i

ℓ̃i = fi,Lq
out
i +

1

2ki
(qouti )2

(8)

It is going to be convenient to define the vector vi = (1,−fi1, . . . ,−f1N).

2.2 The game

Schedules The competition among firms take the form of a game in

which firms compete choosing a supply function for the output, and demand

functions for intermediate inputs and labor, respecting the technology con-

straint (8). The players of the game are the firms: i = 1, . . . , N , and the

actions available to each firm i are linear schedules, one for the output Sout
i ,

and others for intermediate inputs S in
i , and labor Sℓ,i ∈ R+. Denote the

schedule of intermediate input trades of firm i as: Si = (Sout
i ,−S in

i ).8The

assumption of linearity means that there exist a matrix of coefficients

Bi ∈ Rdi×di and a vector Bi,f ∈ Rdi , such that the schedule is linear:

Si(pi) = Bipi −Bi,ffi,L

8We denote the quantities as qi when they are simply variables, with Si when they
are explicit functions of prices.
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The technology constraints (8) imply that the supply function Sout
i deter-

mines the whole input schedule, as inputs are bought in constant propor-

tion, so that: Si = Sout
i vi. The schedule Sout

i is linear, and it turns out

that it is without loss to focus on Sout
i = Bi(v

′
ipi − fi,L) for some Bi ∈ R+,

as proven in Theorem 1.

In the Supplementary Appendix, it is shown that the linear equilibrium

studied in the main text remains an equilibrium (and in some case it can

be proven to be unique) also when firms are not constrained to choose a

linear schedule: the linear schedule is the unconstrained best reply among

all possible schedules.

Prices The market prices are, by assumption, those satisfying the market

clearing equations. Since the demand derived by (7) satisfies Walras’s law,

it is standard that one of the market clearing conditions is redundant: we

leave out the labor market clearing equation
∑

i ℓ̃i(pi) = L(pc), and write

the market clearing system as:∑
i : g∈Nj

Sig(pj) = Dcg(pc) ∀g ∈ M (9)

Or, equivalently, using the lifting notation:∑
i

Ŝi(p) = D̂c(p) (10)

Since the schedules are linear, we can write:∑
i

Ŝi(p) = Âc − B̂cpc(∑
j

B̂j + B̂c

)
p−

∑
j

fj,LB̂j,f = Âc − B̂cpc

Defining the matrices M :=
∑

j B̂j + B̂c and Mf :=
∑

j B̂j,f , the market

clearing system can be written as:

Mp = Ac +MffL (11)

Lemma 3.1 below shows that the system has a unique solution. We
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denote this unique solution as the pricing function mapping coefficient

matrices to prices: p : B → p(B). This function is crucial: it embeds the

information about competition and network interconnections.

Payoffs To complete the definition of the game, we have to define the

payoffs. These are, in short, the profits, calculated in the prices that satisfy

the market clearing conditions (9):

πi(B) := p′
i(B)Si(pi(B))− Sℓ,i(pi(B)) (12)

= p′
i(B)(Bipi(B)− fiLBi,f )− Sℓ,i(pi(B)) (13)

So, formally, we give the following definition.

Definition 2.1.

A Supply and Demand Function Equilibrium (SDFE) is a Nash equilibrium

of the game G = (N , (Ai)i∈N , (πi)i∈N ), where the players are the firms,

actions are slopes, and the payoffs are the profits defined in (13).

Example 1. Horizontal economy/Standard Supply Function Equi-

librium

Consider the case of N = 2 firms, producing the same output good,

without input-output connections (producing using only labor): vi = 0

for i = 1, 2. The demand function in this case is Dc = Ac − Bcpc, where

Ac, Bc ∈ R+. This is an instance of the Supply Function competition by

Klemperer and Meyer (1989) (in the parametric case of the quadratic cost

function).

Example 2. The vertical economy

The vertical economy illustrated in the Section 1 is a special case with

n = 2 firms andm = 2 goods, where the technology satisfies: αU = αD = 0,

vU = 1,vD = (1,−1), and consumer demand satisfies: Bc =

(
1 0

0 1

)
.

Moreover, it is a limit case in which ki → ∞, so that the marginal costs

are constant.

The next example is going to be very useful, because it is the most

tractable case that allows to illustrate both the workings of the model and

some implications in the next sections.

15



U D

U1 U2 D1 D2

Consumers

U1 U2

D1 D2

Consumers

Figure 3: A layered supply chain. Left: bipartite representation, the
squares represent goods, the circles firms. Right: firm-only representa-
tion.

Example 3 (Supply chain with layers). A layered supply chain is a

production structure in which firms are divided in N layers, and each layer

produces one of the goods, as in Figure 3. There are ni firms per layer.

Layers are indexed from 1 to N moving upstream (we can consider the

consumers as layer 0). Firms in layer i+ 1 sell to firms in layer i, firms in

layer 0 sell their output to the consumer, firms in layer N only use labor for

production. If N = 1, we obtain the standard Supply Function equilibrium

as in Klemperer and Meyer (1989), and the example above. For simplicity,

assume that firms in each layer share the same parameters: so fi,L, ki and

fi,i+1 only depend on the layer i in which the firm is. So, vi = (1,−fi,i+1)

for each layer i < N , and vN = 1 for the last layer.

Each firm i < N must submit a schedule Si = (Sout
i ,−S in

i ), and the

matrix Bi ∈ R2×2 satisfies:

Bi = Biviv
′
i = Bi

(
1 −fi,i+1

−fi,i+1 f 2
i,i+1

)

or, equivalently: Sout
i = Bi(pi − fi,i+1pi+1 − fi,L) and S in

i = fi,i+1Bi(pi −
fi,i+1pi+1 − fi,L)

3 Solution and existence

First of all, the next Lemma makes sure that the pricing function and

the payoffs defined in 2.2 is well-defined: the payoffs are indeed uniquely
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defined as a function of the slope coefficients B.

Lemma 3.1. If the production network is connected, the system (9) has a

unique solution.

The proof is in the Appendix A.1.

3.1 Residual demand and price impact

The choice of a best reply of firm i to a profile B−i can be written as:

max
Bi

pi(B)′(Bipi(B)−Bi,f )− ℓi(pi(B)) (14)

subject to the technology constraints (8). However, the best reply prob-

lem can be more conveniently expressed in terms of the (inverse) residual

demand subject to the market clearing conditions 9; and, analogously, in

terms of the residual supply for the input market. We use the term residual

schedule to indicate both the demand and supplies.

The key to understand the equilibrium conditions is to express the best

reply problem using the residual schedule.

Lemma 3.2. 1. There exist a function pr
i : Rdi × A−i → Rdi , such

that B∗
i solves the best reply problem (14) if and only if the quantity

vector q∗
i = B∗

i p
∗
i (B

∗
i , B−i)− fi,Lvi solves:

max
qi,ℓ̃i

q′
ip

r
i (qi;B−i)− ℓ̃i (15)

subject to the technology constraints (8).

2. The function pr
i is the residual schedule, and has the expression:

pr
i (qi;B−i) = Λi(B−i)(Ãi(B−i)− qi) (16)

where Λi(B−i) : −∂qi
pr
i = [(M − B̂i)

−1]i, and Ãi is a vector that is

also a function of B−i.

Moreover, Λi is positive definite, and decreasing in all Bi in the pos-

itive semidefinite order.
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The proof is in Appendix A.2.

The residual schedule, as in standard oligopoly models, represents the

portion of demand and supply not met by competitors. Crucially, in an

input-output setting, the residual schedule also contains information about

the network position of firms. The coefficient matrix Λi is called the price

impact (using a financial terminology) because it collects the slope coeffi-

cients of the (inverse) supply and demand schedules, describing what effect

firm i has on its input and output prices. It is a measure of market power:

the larger the price impact, the larger the surplus that the firm can extract

from that buyer or seller.

The best reply problem expressed as in (15) is more convenient, because

all the network interaction is summarized by the residual schedule. The

optimization then, as in the example of Section 1, is analogous to the

optimization of a monopolist, choosing the quantity (or the price) on the

residual schedule to achieve its optimal profit. The key difference is that

firms “implement” different prices by changing their schedule: and crucially

this, in turn, changes the incentives of other firms to charge higher prices.

3.2 Existence and uniqueness

In this section I present the existence and uniqueness result for the Nash

equilibrium.

Using the formulation of Lemma 3.2, and noting that the technology

constraints (8) imply: qi = qouti vi, taking the first-order conditions we get:

v′
ip

r
i − qouti v′

iΛivi −
1

ki
qouti = 0

Solving, we find that the optimal schedule is:

qouti = Sout
i (pi) =

v′
ip

r
i

v′
iΛiv + 1/ki

So, the schedule is linear, and the coefficient satisfies:

Bi =

(
v′
iΛivi +

1

ki

)−1

(17)
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These are the equilibrium fixed-point equations. To understand the mean-

ing, note that, for example, in the vertical economy of Section REFER-

ENCE, we have v′
iΛivi = Λout

i + Λin
i , that is: the slope depends inversely

on the sum of the price impacts on both the input and the output: we see

a first effect of multilateral market power. In general, since vi has negative

elements for the inputs, the links between outputs and inputs are negatively

weighted, so that:

v′
iΛivi = Λout

i + f ′
iΛ

in
i f i − 2f ′

iΛ
out,in
i

The next Theorem proves existence and uniqueness of the equilibrium.

Theorem 1.

There exist a unique Nash equilibrium of the game G, and it is in pure

strategies.9 Moreover, the equilibrium coefficients B1, . . . , Bn ∈ Rn
+ satisfy

(17).

The proof is in Appendix, A.3. The proof considers a modified game G ′

with action spaces Xi = R and payoffs: Ui(x1, . . . , xn) = ln πi(e
x1 , . . . , exn).

The new game corresponds to a reparameterization of the strategies of

the original game, and a monotonic transformation of the payoffs. As

such, any Nash equilibrium of the game G corresponds to one and only

one Nash equilibrium of the game G ′. The game G ′ = (N , (Xi, Ui)i∈N ) is a

supermodular game, and thanks to the assumption of increasing marginal

cost the strategy space is compact: Bi < ki, so the iteration of the best

reply always converges.10 Moreover, G ′ is also a potential game, and the

potential is strictly concave: as a consequence, the game has a unique Nash

equilibrium.

A first corollary is that in equilibrium we do not need to worry about

exit of firms: profits are never negative.

9If Assumption 2 were assumption is violated, we get that the slopes of the firms
competing tend to infinity, so technically the equilibrium does not exist; but from an
economic perspective the limit is well defined, the involved firms simply behave as per-
fectly competitive. This is because, as highlighted by Klemperer and Meyer (1989), with
constant marginal costs the supply function equilibrium behaves as price competition.

10This is not a necessary condition for the equilibrium. Indeed, the vertical economy
example in the Section REFERENCE is an example where the equilibrium slopes are
finite even when ki → ∞.
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Corollary 3.1. In equilibrium profits are:

πi(B) = Bip
′
ivi (v

′
ipi − fiL)− fiLBi (v

′
ipi − fiL)−

1

2ki
B

2

i (v
′
ipi − fiL)

2

= Bi

(
1− 1

2ki
Bi

)
(v′

ip− fiL)
2 (18)

and, moreover, Bi < ki, so we get πi(B) > 0 for all firms i.

4 Equilibrium and the role of the network

So far, we identified the first-order conditions. Now we want to analyze

what are the implications of the model in terms of firm’s market power,

particularly in relation to the network of input-output connections.

4.1 Markups and markdowns

The standard approach to measure market power is to look at the gap

between price and marginal cost, or marginal revenue products.

Definition 4.1.

The total cost of firm i is: Ci(q
out
i ) =

∑
j pj (qi) fijq

out
i +

αi

2
(qouti )

2
. Define

the (absolute) markup as µi := pi −
∂Ci

∂qouti

.

The revenue product of input g is: Rig(qig) = pouti qouti −
∑

j ̸=g pj (qi) fijq
out
i −

αi

2
(qouti )

2
. The markdown on input g is: µig :=

∂Rig

∂qig
− pg.

Lemma 4.1. The vector µi = (µi,−µig) satisfies:

µi = qouti Λivi, (19)

where Λi is the price impact.

So, in the equilibrium of this model, each firm charges both a markup on

the output and markdowns for each input. The magnitude of the markup

and markdowns depends, not surprisingly, on the price impact: equation

(19) is nothing beyond the standard Lerner equation connecting the slope
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(or elasticity) of demand to the price charged. The slope of the firm equi-

librium schedule Bi depends inversely on the markups: the equilibrium

equation (17) can be expressed also as:

Bi =
1

(qouti )−1v′
iµi + k−1

i

where v′
iµi = µi +

∑
g fi,gµi,g aggregates the markup and markdowns: the

larger this sum, the smaller the equilibrium slope. If the firm did take

prices as given, the price impact would be zero and also the markups.

Markdowns are heterogeneous, and depend on the network position:

this includes of course the number of competitors, but not only: also the

number of indirectly connected customers or suppliers matters. The next

subsection illustrates this through the simple examples of the vertical econ-

omy and the supply chain with layers. The subsection after connects the

markups to the network structure in general.

4.2 Examples

4.2.1 Standard supply function equilibrium

The standard supply function equilibrium of Example 1 the price impact

is simply the inverse slope of the residual demand:

Λi =

(
Bc +

∑
j ̸=i

Bj

)−1

(20)

4.2.2 The supply chain with layers

In the supply chain with layers the matrix M could be large if the number

of layers N is large. So, to derive the price impact is more convenient

to directly use the expression of the residual schedules. Let us focus on

the case Bc = fi,i+1 = 1, for simplicity. For firms in layer 1, the slope of

demand is Bc + (n1 − 1)B1. Firms in the upstream layer face a demand

n1B1(p1 − p2) + (n2 − 1)B2(p2 − p3), where now is necessary to solve the

first layer equations for p1 as a function of p2. Proceeding iteratively, we
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find the expression of the (direct) residual schedule:

qi = (Λ
out

i )−1(A− pi)︸ ︷︷ ︸
Demand

from customers

− (ni − 1)Bi(pi − pi+1)︸ ︷︷ ︸
Supply of

competitors

(21)

qi = (Λ
in

i )−1pi+1︸ ︷︷ ︸
Supply

from suppliers

− (ni − 1)Bi(pi − pi+1)︸ ︷︷ ︸
Demand of
competitors

(22)

where:

Λ
out

i =
1

Bc

+
∑
j<i

1

njBj

(23)

Λ
in

i =
∑
j>i

1

njBj

(24)

represent the “aggregate” price impact of firms in layer i, respectively, on

the output price, and the input price.11 These are intimately connected

with the network: we can see that Λ
out

i is increasing with i, while Λ
in

i is

decreasing.

Inverting the Jacobian of this, we find that the price impact matrix of

firm i is equal to:

Λi =

(
(Λ

out

i )−1 + (ni − 1)Bi −(ni − 1)Bi

−(ni − 1)Bi (Λ
in

i )−1 + (ni − 1)Bi

)−1

(25)

Define Det = (Λ
in

i )−1(Λ
out

i )−1 + ((Λ
in

i )−1 + (Λ
out

i )−1)(ni − 1)Bi the deter-

minant of Λ−1
i . Finally, using the expression (19), we can compute the

11We might understand intuitively these equations, and in particular the term(
(ni − 1)Bi + (Λ

out

i + Λ
in

i )−1
)−1

by noting that horizontal relationship (for example,

the direct competitors in the same layer) imply a summation of the slope coefficients
(the term (ni − 1)Bi), while vertical relationships (across layers) imply an harmonic
sum (the expressions for the price impacts in Equation (24)). This has an interesting
analogy with the equations describing the electrical resistance: also in that case, when
resistances are set in parallel (horizontally related), their total resistance is the sum of
individual resistances, whereas when they are in sequence (vertically related), the total
resistance is the harmonic sum.
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markup vector:

µi = qouti Λiv

=
qouti

Det

(
(Λ

in

i )−1 + (ni − 1)Bi (ni − 1)Bi

(ni − 1)Bi (Λ
out

i )−1 + (ni − 1)Bi

)
v

=
qouti

Det

(
(Λ

in

i )−1

−(Λ
out

i )−1

)

= qouti


Λ

out

i

Λ
out

i + (Λ
in

i + Λi)−1)(ni − 1)Bi

− Λ
in

i

Λ
in

i + (Λ
in

i + Λi)−1)(ni − 1)Bi

 (26)

It turns out that in the homogeneous case of ki = k and ni = n, the

“total” price impact Λ
in

i + Λ
out

i is constant, and Bi too: as a consequence,

only the ranking of Λ
out

i and Λ
in

i matters. The following Proposition makes

this formal.

Proposition 1.

Suppose ki = k and ni = n for all layers i. In the Supply and Demand

Function Equilibrium for the layered supply chain:

1. the markups are larger the more upstream the layer is, while mark-

downs are larger the more downstream a layer is;

2. if ni ≥ nj firms in layer j have larger profits than firms in layer i.

The intuition for the result above is simple: upstream firms perceive

a smaller elasticity of the residual demand on output markets the more

they are upstream, and so charge higher markups. The opposite happens

with residual supply and markdowns. If ni is constant across layers, the

situation is completely symmetric, and so the increase in markups and

decrease in markdowns exactly offset each other, and the firms all have the

same profits. Hence, each layer extracts the same surplus. Instead, if some

layer becomes more competitive (ni is larger), the corresponding firms have

lower profits.
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4.2.3 The vertical economy

As illustrated in the introductory example in Section 1, the price impacts

are:

ΛU =

(
Bc,U +

(
1

Bc,D

+
1

BD

)−1
)−1

(27)

ΛD =

(
1/Bc,D 0

0 1/(BU +Bc,U)

)
(28)

Hence, the first order conditions (17) reduce to (6) in Section 1.

This example shows that the price impact upstream ΛU can be both

larger or smaller than ΛD, depending on the parameters. This is because in

this economy, contrary to the supply chain with layers, the firm upstream

also sells to consumers directly: having more customers increases the slope

of demand, and this effect may counteract the pass-through effect.

4.3 The goods network

What can we say on the relation between the network position and market

power in general? We summarize the discussion in the following remarks

Remark 4.1 (Prices as centralities). From Equation REFERENCE, we

can write:

p = D−1(I −G)−1A

where the diagonal matrix D has the slope of the excess supply
∑

j Bj,gg

as diagonal entry in position g, g, and the matrix G is defined as:

Gi,gh =
−Mg,h∑
j Bj,gg

This can be thought of as the adjacency matrix of a weighted network,

where nodes are goods, and a link is present when the price of h directly

affects the quantities traded (to be precise, the excess supply) of g. The

denominator is a normalization, measuring the effect of the price of g on

the own excess supply. We label this network the goods network. Note

that the weights of the links are endogenous and determined in equilibrium
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by the slopes of the schedules chosen. With this interpretation, the prices

measure the Bonacich centrality in the goods network according to the

weights vector A. 12

To understand better the interpretation of the link weights, let us con-

sider the special case in which Bi = 1 for all i, and the consumer demand

satisfies Bc = I (the identity).13 In this case, the entries of the matrix M

would be:

Mgg = |firms trading g, except i+ 1|

Mgh = −|firms selling h, buying g| − |firms selling g, buying h|

+ |firms buying both g, h|,

so, the weight of the link between g and h is high when, among the firms

trading h, many transform g and h or vice-verse, but not too many use

both as inputs. This highlights that the network effect is strong when h, g

have an input-output connection: in such a case, when the price of one goes

up the other tends to increase too. Instead, an horizontal connection, since

goods are perfect complements, because naturally in that case an increase

in the quantity of one triggers a decrease in the price of the other: the

weight can even be negative, if this effect is strong enough.

The network does not only offer an interpretation of the prices, but also

of the price impacts and the slopes.

Remark 4.2 (Markups as centrality). Define the goods network ecluding

firm i as the goods network, where all the weights are computed as if

Bi = 0, that is, excluding firm i. Call Gi the corresponding adjacency

matrix. Then, the price impact can be written as:

Λi = [D−1
i ]N (i)[(I −Gi)

−1]N (i)

So that Λi,hg is proportional to the number of direct and indirect paths

between good g and h in the goods network excluding firm i.

12The goods network is undirected in terms of connections, but the weights may be
asymmetric: this is an effect of the normalization.

13This in general is not the equilibrium, but it is always possible to find a configuration
of ki such that this is exactly the equilibrium.
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As a consequence, the markup/markdown vector satisfies:

µi = qouti [D−1
i ]N (i)[(I −Gi)

−1]N (i)vi = D−1
i [(I −Gi)

−1v̂i

So, the markup is proportional to the Bonacich centrality of good g in the

goods network relative to firm i, with weights given by the vector v̂i. The

markup also depends on the cross effect of the output price on the input.

However, since v̂i has negative elements, this effect is weighted negatively:

this is because when the cross-effect is large, a large markup (low quantity),

triggers an increase of the input price, that decreases the markup.

Finally, since the slopes depend inversely on v̂′
iµi, we conclude that the

equilibrium slopes depend inversely on the weighted sum of the centralities.

Definition 4.2.

Define the goods network relative to firm i as the network (M,L) where:

1. the nodes are the goods, M;

2. two goods-nodes g, h are linked if there is at least a firm trading both,

apart from i: (h, g) ∈ L if and only if there is j ∈ N such that

h ∈ Ni and g ∈ Ni;

3. The adjacency matrix of the network relative to firm i is the matrix

Gi that has weights:

Gi,gh =
−M−i,gh√
Di,ggDi,hh

Example 4 (“Tree” network). Consider the production network depicted

in Figure 4a. There are 4 goods: U , W , D and C. Each good except C is

produced by two firms: e.g. U is produced by U1 and U2. In Figure 4b is

represented graphically the goods network of this economy relative to firm

D2: the network is disconnected, because without firm D2 there is no firm

trading both goods U and D.

Since the goods network is disconnected, the price impact matrix is a

block-diagonal matrix. In this case, since firms have only one input, it is
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D1D2
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Consumers

(a) A production network where 4 goods
are traded: U , D, W and C. Each good
except good C is sold by 2 firms.

C

D

WU

(b) The goods network relative to firm
D2.

actually diagonal, and is:

Λi =

(
Λout

i 0

0 Λin
i

)

Point 1 of Theorem REFERENCE then means that Λout
i is equal to the

slope of the schedule of firm C minus the supply of D1, times the network

effect, which is the number of cycles of the output link in the reduced

graph; and, similarly, for Λin
i . The number of cycles is a measure of size

and, the higher the weights REFERENCE, the higher the measure. In this

example, the cycles centred in good U are just 1 (the trivial cycle), so the

indirect effect is equal to 1; while in the output good is a higher number.

Point 2 then allows to conclude that in this case. since Λi is diagonal, the

markup is simply proportional to the price impact.

For a more general case, let us consider the supply chain with layers,

in which the price impact is given in Equation REFERENCE. The main

difference is that now the network is connected, and so a change in the

output quantity will also affect the input price. Since M is an M -matrix,

it is easy to conclude here that Λi has all positive entries. So, an increase

in output quantity will decrease both the output price, directly, but also

the input price, indirectly. Why? An increase in the output price will

make the competitor sell more, so buy more, and so trigger an increase

in the input price. This is why Λi,gh > 0. By the same reason, the price
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impact on the output is still measured by the cycles centered in good 1, but

now the cycles involve also the inputs. Again, this is because the network

is connected. So, the markup is proportional to the cycles centered in 1,

minus the measure of direct and indirect links between 1 and 2.

5 The role of multilateral market power

5.1 General price impacts

The key feature of the model studied so far is that firms have multilateral

market power: they can affect prices in all the markets they are involved in.

What are the implications of multilateral market power? To answer this

question, in this section I introduce a model that simultaneously general-

izes the supply and demand function competition and various other classic

models of oligopolistic competition, with and without networks. This al-

lows us to do comparative statics on market power, comparing the model

of the previous sections with an analogous model in which firms are price-

takers on input markets.

Definition 5.1.

Consider a profile of functions Λ = (Λ1, . . . ,Λn), where:

Λi : B−i → Λi(B−i) ∈ Rdi×di

such that for all i:

1. Λi is continuous;

2. Λi is positive semidefinite;

3. Λi is decreasing in the profile B in the positive semidefinite ordering.

A Generalized SDFE is a profile of schedules B∗ = (B∗
1 , . . . , B

∗
n) such

that each B∗
i solves the best reply problem (15), but where the residual

schedule satisfies:

∂qi
pr
i (qi, B−i) = Λi(B−i) ∀B−i ∀i ∈ N
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The Supply and Demand function competition is a Generalized SDFE,

because Λi derived in Lemma 3.2 is continuous and decreasing. The interest

of the Generalized SDFE is that many other standard models are also

special cases. For example, Walrasian equilibrium is the special case where

Λi = 0 for each i. Also Cournot oligopoly is a special case: consider the

setting of the standard Supply Function Equilibrium of Example 1 and

change Λi =
1

Bc

in Equation (20). What this means is that firms behave as

if competitors have choosen schedules with constant slope (set Bj to 0 in

the equation): but schedules with constant slopes are fixed quantities, as

in Cournot. Indeed, it can be checked that this Generalized SDFE yields

exactly the same equilibrium quantities and price as the Cournot oligopoly

with the same parameters of Example 1. The case of Bertrand is analogous,

provided we use differentiated products.14 What is perhaps more striking

is that also some sequential models are also special cases of the Generalizes

SDFE, as we argue below.

The next Theorem proves existence of an equilibrium, and the funda-

mental comparative statics result on the price impacts.

Theorem 2. 1. A generalized SFE exists. Moreover, it is a game of

strategic complements, and as such it always has a maximal and a

minimal equilibrium (possibly identical).

2. Consider two models in which the profile of price impact functions

are, respectively Λ1 and Λ2, such that for each profile B we have

Λ1
i (B−i) ≥ Λ2

i (B−i) for all firms i (in the p.s.d. ordering). Then,

in the maximal and the minimal equilibria, the slope coefficients are

lower the first model: (B1)∗i ≤ (B2)∗i (in the p.s.d. ordering) for each

firm i.

The key intuition both of part 1) and 2) comes once again by strategic

complementarity: a lower price impact means higher slopes, that in turn

trigger higher best response, and equilibrium slopes.

The proof is in Appendix C.1.

The previous Theorem looks at comparative statics with respect to

14This is because in my model each good has a unique price, and so the standard
homogeneous goods Bertrand competition violates this assumption.
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price impacts. If there is only one final price, it is possible to extend the

comparative static exercise looking at the effect on the final price.

Corollary 5.1. Consider two profiles of price impact functions Λ1 and Λ2

ordered as in Theorem 2, part 2. In any network such that the consumer

only consumes one good C = {c}, the price of the final good is higher in

the model with smaller price impacts Λ2.

This is the tool with which we can explore the effect of different as-

sumptions on multilateral market power.

5.2 Comparison with unilateral and local market power

As discussed in the Literature section, many papers in the production net-

work literature assume as a simplification that input prices are taken as

given, and that prices in other markets are taken as given. In the Gen-

eralized SDFE model, it is easy to embed these two assumptions, with

assumptions on the functional form of the price impact. Let us first define

these two assumptions precisely.

Definition 5.2. 1. The model with unilateral market power is a Gener-

alized SDFE in which firms take input prices as given.

2. The model with local market power is a Generalized SDFE where

firms take as given the prices in the markets in which they are not

directly involved in.

The next Theorem is the main result of the Section.

Theorem 3.

The models of Definition 5.2 are special cases of the Generalized SFE, for

different choices of the price impact functions Λi:

1. Unilateral market power: for all firms i using intermediate in-

puts:15

Λunilateral
i =

(
(M − B̂i)

−1
ii 0′

0 0

)
15It turns out that this approach is exactly the one that allows to recover the Sequential

Oligopoly as a special case of the model.
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2. Local market power:

Λlocal
i (B−i) = (Mi −Bi)

−1

Moreover, in both cases, the price impacts are smaller, that is ∀i ∈
N ∀B−i we have Λ

local
i (B−i) ≤ Λmultilateral

i (B−i) and Λunilateral
i (B−i) ≤ Λmultilateral

i (B−i)

Now, to explore the effect of multilateral market power, is sufficient to

consider the price impact functions of the previous Theorem, and compare

them with the baseline. For example, consider the setting of the vertical

economy of Section 1; and suppose we want to compute the Generalized

SDFE with unilateral market power. According to Theorem 3, we simply

have to modify the equilibrium equations by changing the price impact of

Equation (28) to:

Λsequential
D =

(
1 0

0 0

)
while ΛU , having no (non-labor) intermediate inputs, is unaffected. It is

clear that Λunilateral ≤ Λmultilateral; and thanks to Theorem 2, we know that

in equilibrium this implies that the slopes are higher in the unilateral model.

Using Corollary 5.1, we can also conclude:

Corollary 5.2. For any network in which such that there is only one final

good, with unilateral or local market power the final price is smaller than

in the benchmark SDFE with multilateral market power.

This is the main result on the role of multilateral market power. We

express it restricting market power on inputs because it is the standard

assumption, but if we were to restrict market power on outputs and set

Λout
i = 0, the exact same conclusion would hold.

Remark 5.1 (Sequential Monopoly is a Generalized SDFE). The

most standard way to model price setting in the context of the vertical

economy is perhaps the Sequential Monopoly à la Spengler (1950), that is

a sequential game where firms set output prices sequentially, starting up-

stream with U and then D, and D (by construction) takes the input price

pD as given. It turns out that the first-order conditions of the Sequential
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Monopoly thus defined imply exactly the same equilibrium price and quan-

tity of the Generalized SDFE with unilateral market power. To understand

why, let’s write the first-order conditions of the sequential model. Since it

is a monopoly, setting quantities or prices is exactly equivalent. By back-

ward induction start from firm D. The inverse demand is as in Section 1:

pD = A−qD. Maximizing the profit of D while taking pU as given produces

the FOCs for the downstream firm:

pD − pU +
∂pD
∂qD

qD = 0 (29)

Notice that this is precisely the same as Equation (5b) when
∂pU
∂qD

= 0,

that is the FOC of the Generalized SDFE with unilateral market power.

The mechanism is the same: since the firm does not internalize the price

impact on the input, that term disappears from the FOC.

To understand why also the FOC for the upstream firm mimic the

SDFE is a bit more subtle. In the sequential monopoly model, the (inverse)

demand for firm U , in equilibrium, is given by the equilibrium choice of

firm D as a function of pU . But this means exactly to use equation (29) and

the consumer demands, to back up prU : this is exactly the same as solving

the market clearing conditions for a given choice of schedule of firm D.

So, we get that the equilibrium demand for firm U is exactly the same in

the Sequential Competition, and in the Generalized SDFE with unilateral

market power!

In the Supplementary Appendix, I prove that the analogy does not stop

at the Sequential Monopoly, but it extends also to Sequential Cournot, that

is a Generalized SDFE with unilateral market power, with the additional

“Cournot” assumption that firms consider flat the schedules chosen by

direct competitors.

We conclude the section showing that multilateral market power also

affects the way the surplus is split, in addition to the total size. In the case

of the layered supply chain, we can make precise characterizations.

Proposition 2. 1. If firms take the input price as given, markups are

still increasing going upstream, while there are no markdowns: as a

consequence, profits are increasing upstream.
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2. If firms take the output price as given, then markdowns are increasing

going downstream, while there are no markups: as a consequence,

profits are increasing downstream.

If firms instead do not internalize their effect on input prices, but only

outputs, the symmetry is broken, because firms consider the effect of net-

work position on the elasticitiy of demand only on, e.g., the output side.

These results yield important insights on the hidden consequences of

using models in which competition is artificially constrained to be unilat-

eral. If such a modeling strategy is not motivated by the specifics of the

market studied, but is just an assumption imposed for tractability, as in

production network models, the result above suggests that implication for

both the total amount of distortions due to market power and the relative

ranking of market power among firms can be severely changed. The supply

and demand function equilibrium provides a setting in which the modeler

does not have to choose on which side of the market firms can affect prices,

rather the price impact is an additional prediction that can be asked to the

model.

Example 5. Vertical mergers can be welfare improving or not

For a particularly stark example, consider an instance of the Supply

chain with layers, with 2 layers, with 1 firm in the upstream sector 2 and

n1 firms in the downstram sector, 1. Suppose after a merger between the

firm in 1 and a firm in 0 the merged firm does not sell its intermediate

good to others but it keeps it all to produce the final output. Then all

other firms in 1 cannot produce anymore, and we are left with a monopoly,

as shown in Figure 5. The monopoly price in the after-merger setting is:

pM = A

(
Bc +

1

1 + 1/Bc

)−1

where BM = Bc

1+Bc
is the equilibrium coefficient of the supply of the only

firm.

In the pre-merger equilibrium instead the final price is:

p =
A

Bc +
n1B1B2

n1B1+B2

= A

(
Bc +

1

1 + 2
n1B1

)−1
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2

1b1a 1, n1

Consumers

2+1a

Merged firm

Consumers

Figure 5: Left: pre-merger economy. The blue circle indicated the merging
firms 2 and 1a. Right: the economy after the merger: 1b and 1c are driven
out of the market because the merged firm does not sell them the necessary
input anymore, and the merged firm becomes a monopolist.

where B1 and B2 are as usual the coefficients of the equilibrium supply and

demand functions, and the last equality is obtained using the best reply

equation for B2. Hence we get that the price is higher after the merger if

and only if 2Bc < n1B1. The expression shows the trade-off between double

marginalization, represented by the factor of 2 that appears because the

pre-merger economy is a line with 2 steps, and the extent of foreclosure,

represented by n1B1, that measures how much competition is lost after the

merger:

2︸︷︷︸
decreased double
marginalization

×Bc < n1B1︸ ︷︷ ︸
extent of foreclosure

If Bc > 1, since B1 < 1, for n1 = 2 the merger is welfare-improving.

Since the RHS goes to infinity for n1 sufficiently large, the merger is wel-

fare reducing. In particular, we can identify a n∗ such that the merger is

welfare-decreasing if n > n∗ (because the foreclosure effect is stronger),

and welfare improving if n < n∗. Such value is defined implicitly by

Bc = n∗B
multilateral
0 (n∗).

Now consider the model with unilateral market power. We can define a

similar threshold n∗, defined by Bc = n∗Blocal
1 (n∗). By Theorem 2 for any

n1, B
unilateral
1 (n1) > Bmultilateral

1 (n1), so that n∗ < n∗. Hence, it follows that

for n ∈ (n∗, n
∗) the merger is welfare decreasing with multilateral market

power, but welfare-increasing with unilateral market power.
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6 Conclusion

This paper provides a way to model oligopoly in general equilibrium as

a game in which firms fully internalize their position in the supply chain

and have market power both over inputs and outputs, in an endogenously

determined way. I show that such features are desirable in a input-output

model with market power: if absent, both the aggregate and the relative

ranking of distortions due to imperfect competitions is crucially affected.

This suggests that, when modeling complex networks of large firms with

market power, simplifying assumptions might affect in a sizable way the

results.

A further interest of the competition in schedules framework is that

it is a standard model for procurement auctions (Holmberg et al., 2019;

Klemperer and Meyer, 1989; Ausubel et al., 2014), where the consumer is

the auctioneer. The results developed can help shed light on price formation

in procurement auctions where the bidders are simply the last stage of a

potentially complex supply chain. The exploration of the implications of

this for design are an interesting avenue for further research.
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Appendix

A Proofs of Section 3

A.1 Proof of Lemma 3.1

We prove that it is always possible to invert the market clearing conditions

(11).

Consider the quadratic form x′Mx. This is equal to x′Mx =
∑

i x
′B̂ix+

x′B̂cx =
∑

i x
′
iBixi + x′

cBcxc, where, as for the prices, we denote xi =

(xg)g∈Ni
.

Restrict attention to a subset of n firms, chosen such that each firm

produces a distinct good: for each good g, denote ig the firm producing g

that is chosen. Define F the matrix with elements figh. By the assumption

of viability, I − F ′ is an M-matrix, and in particular is invertible (Horn

et al., 1994). Moreover, the columns of I −F ′ are the v̂ig vectors: so, they

must be linearly independent. So, there are at least n linearly independent

v̂i. So, there are at least n linearly independent v̂i vectors. Now: x
′Mx =

x′
cBcxc +

∑
iBix

′v̂iv̂
′
ix. For this to be zero, it means that x must either

be zero, or be orthogonal to v̂i for every i. But since they include a basis,

if follows that x = 0. If x′
(
M − B̂i

)
x = 0 by analogous reasoning x must

be orthogonal to all v̂j for j ̸= i. So, either it is 0, or is parallel to v̂i.

Then, with an induction argument analogous to the one below, we obtain

the thesis.

A.2 Proof of Lemma 3.2

Consider the system 11. It can equivalently be rewritten as:

q̂i + (M − B̂i)p = Ac (30)

We know from Lemma 3.1 that M − B̂i is positive definite, so we can

invert it and write:

pr(qi) = (M − B̂i)
−1(A− q̂i)
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Reordering the equations so to have all the rows associated with inputs and

ouputs of i first, we can write the matrix M in blocks as:

M − B̂i =

(
Mi −Bi Mi,−i

M ′
i,−i M−i

)

where Mi is the submatrix relative to input and output goods of i, M−i the

submatrix relative to goods that are neither inputs nor outputs of i, and

Mi,−i is the off-diagonal block. Using the rule for block matrix inversion:

pr
i = [(M − B̂i)

−1]i
(
Ai − qi −Mi,−i(M−i)

−1A−i

)
Defining Λi := [(M − B̂i)

−1]i and Ãi := Ai −Mi,−i(M−i)
−1A−i we obtain

the thesis.

A.3 Proof of Theorem 1

To derive the game G ′ as defined in the text, first let us check that we

can limit ourselves to schedules of the form REFERENCE. Solving the

maximization problem in Lemma 3.2, we get:

Sout
i (pi) = (v′

iΛivi + 1/ki)
−1

(v′
ipi − fiL)

As a consequence, we have Bi must have the form Biviv
′
i for some Bi ∈ R+.

So, the payoff of firm i can be rewritten as:

π̃i(Bi, B−i) = Bi (v
′
ipi − fiL)

Now, we consider the game G ′ with the payoffs defined in the main text.

Since both ln(·) and exp(·) are monotone, a profile B is a pure Nash equi-

librium of G if and only if the profile x = (lnB1, . . . , lnBn) is a pure Nash

equilibrium of G ′. It follows that the Nash equilibrium of G ′ is unique if

and only if the Nash equilibrium of G is unique.

Existence The best reply equation (17) shows that Bi ∈ [0, ki], and is

continuous. So, by Brouwer’s fixed point theorem, there exist an equilib-
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rium.

Potential To show that the modified game G ′ is a potential game, we

show that the second cross-derivatives of the payoffs are equal. Since the

supply is Si = Biviv
′
ipi, the profit can be rewritten as:

πi = p′
iSi −

αi

2

(
Sout
i

)2
= Bip

′
iviv

′
ipi −

αi

2
B

2

i (v
′
ipi)

2

= Bi

(
1− αi

2
Bi

)
(v′

ipi)
2

= Bi

(
1− αi

2
Bi

) (
v̂′
ip
)2

To compute the derivative of the payoffs, we must differentiate the matrix

M−1. Its derivative is:

∂

∂Bi

M−1 = −M−1d

(∑
j

Bjv̂jv̂
′
j + B̂c

)
M−1 = −M−1v̂iv̂

′
iM

−1

Moreover, v̂′
ip = v̂′

iM
−1A. So:

∂

∂Bi

v̂′
jp = −v̂jM

−1v̂iv̂
′
iM

−1A = −v̂jM
−1v̂iv̂

′
ipi (31)

Using this, we find that the derivative of the profit is:

∂πi

∂Bi

=
(
1− αiBi

)
(v̂ip)

2 − 2Bi

(
1− αi

2
Bi

)
(v̂ip) v̂iM

−1v̂iv̂
′
ipi

=
(
1− αiBi

) (
v̂′
ip
)2 − 2Bi

(
1− 1

2
αiBi

)(
v̂′
ip
)2

v̂′
iM

−1v̂i

= Bi

(
1− 1

2
αiBi

)(
v̂′
ip
)2
 1− αiBi

Bi

(
1− 1

2
αiBi

) − 2v̂′
iM

−1v̂i


Notice that with our reparameterization Bi = exi and

∂Ui

∂xi

=
∂ ln πi

∂ lnBi

. Since
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πi = B
(
1− αi

2
Bi

)
(v̂ip)

2, the derivative of Ui becomes:

∂Ui

∂xi

= 1− 1

2

αie
xi(

1− 1

2
αiexi

) − 2exiv̂′
iM

−1v̂i

= 1− 1

2

αiBi(
1− 1

2
αiBi

) − 2Biv̂
′
iM

−1v̂i

Using again 31:

∂2Ui

∂xj∂xi

=


2BiBjv̂

′
iM

−1v̂jv̂
′
jM

−1v̂i = 2
(
v̂′
iM

−1v̂j

)2
i ̸= j

= −αi

2

1(
1− 1

2
αiBi

)2 − 2v̂′
iM

−1v̂i + 2
(
v̂′
iM

−1v̂i

)2
i = j

Since
∂2Ui

∂xj∂xi

=
∂2Uj

∂xi∂xj

, the game is a potential game.

This means that there exists a function Φ such that:

∂Φ

∂xi

=
∂Ui

∂xi

For each i. In particular, this means that
∂2Φ

∂xi∂xj

=
∂2Ui

∂xi∂xj

. So, even

without knowing the expression of Φ, we can compute its Hessian matrix:

denote it as H.

Uniqueness Now, we prove that the potential is strictly concave. This

proves that the game can have at most one Nash equilibrium. To prove it,

we prove that the Hessian matrix H is negative definite, by proving that
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−H is strictly diagonally dominant. Sum the off-diagonal entries:∑
i ̸=j

|Hij| =
∑
i ̸=j

Hij

=
∑
i ̸=j

2BjBi

(
v̂′
iM

−1v̂j

)2
= 2Bjv̂

′
jM

−1

(∑
i ̸=j

Biv̂iv̂
′
i

)
M−1v̂j

= 2Bjv̂
′
jM

−1
(
M − B̂c −Bjv̂jv̂

′
j

)
M−1v̂j

= 2Bjv̂
′
jM

−1MM−1v̂j − 2Bjv̂
′
jM

−1
(
B̂c +Bjv̂jv̂

′
j

)
M−1v̂j

< 2Bjv̂
′
jM

−1v̂j − 2Bjv̂
′
jM

−1
(
Bjv̂jv̂

′
j

)
M−1v̂j

= 2Bjv̂
′
jM

−1v̂j

(
1−Bjv̂

′
jM

−1v̂j

)
= −Hjj

where the strict inequality is because B̂c is positive semidefinite, and there

must be at least a path from each firm j to the consumer, so that [M−1v̂j]c ̸=
0. Since the expression above is a sum of positive terms, it follows that

Hjj < 0, and −Hjj >
∑

i ̸=j |Hij|, so −H is strictly diagonally dominant,

so is negative definite. Hence, Φ is concave and the Nash equilibrium is

unique.

Moreover, since the diagonal of H is negative, it follows that the payoffs

are concave, so the FOCs (17) are necessary and sufficient for the equilib-

rium. Moreover, the game is a supermodular game, so the unique Nash

equilibrium is also the unique rationalizable action profile.
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B Proofs of Section 4

B.1 Proof of Lemma 4.1

The revenue product generated by input g is:

Rk(qig) = q′
ipi −

αi

2

(
qouti

)2
+ pgqig

= qouti v′
ipi −

αi

2

(
qouti

)2
+ pgqig

=
qig
fig

v′
ipi

(
qig
fig

vi

)
− αi

2

(
qig
fig

)2

+ pgqig

We first compute the marginal cost and the marginal revenue product:

∂C

∂qouti

=
∑
j

pj
(
qouti vi

)
fij −

∑
j

[Λivi]j fijq
out
i + αiq

out
i (32)

∂Rig

∂qig
=

1

fig
v′
ipi −

qig
f 2
ig

v′
iΛivi − αi

qig
f 2
ik

− 1

fik
[Λivi]g qik + pg (33)

= − 1

fig
[Λivi]k qik + pg (34)

So, the markup and markdowns are:

µi = pouti − ∂C

∂qouti

= pouti −
∑
j

pjfij − αiq
out
i +

∑
j

[Λivi]j fijq
out
i

= v′
ipi − αiq

out
i − v′

iΛiviq
out
i + [Λivi]i q

out
i

= [Λivi]i q
out
i = [Λiqi]i

µi,g =

(
− 1

fik
[Λivi]k qik + pk

)
− pk

= − [Λivi]g q
out
i

So, the markup-markdown vector (with right signs) is: Λiqi.

B.2 Proof of Proposition 1

The proof follows from the following three lemmas, proven in the Supple-

mentary Appendix.
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Lemma B.1.

(Λi)
−1 = (Λout

i + Λin
i )−1 =

∏
k ̸=i nkBkBc∏

k ̸=i nkBk +Bc

∑
j ̸=i

∏
k ̸=i,k ̸=j nkBk

(35)

Λ
−1

N =

∏
k ̸=1 nkBkBc∏

k ̸=1 nkBk +Bc

∑
j ̸=1

∏
k ̸=1,k ̸=j nkBk

(36)

Lemma B.2. Consider the equilibrium profileB∗. If ni > nj thenBRi(X,B∗
−i,j) >

BRj(X,B∗
−i,j) for all X ≤ B∗

i , B
∗
j .

Lemma B.3. In equilibrium ni ≥ nj implies B∗
i ≥ B∗

j .

We have that vi = (1,−1) for each i. Moreover, by market clearing

qouti = qoutj := Q for any i, j. So, using the expression for markups computed

in REFERENCE, and noting that by Lemma B.3 if ni = nj Bi = Bj for

all sectors and so market clearing conditions imply that pi − pi−1 =
q
B
and

Λ = Λ
in

i + Λ
out

i are constant for any i, we get:

µout
i =

Λout
i Λ

−1

(1 +B(n− 1)) + Λ
−1

q

B

µin
i =

Λin
i Λ

−1

(1 + (n− 1)B) + Λ
−1

q

B

Now inspecting the right hand side of the expressions we see that the

markup is increasing with Λout
i , which is itself increasing as one goes up-

stream. Then it follows that the markup is increasing going upstream, and

symmetrically for the markdown.

C Proofs of Section 5

C.1 Proof of Theorem 2

Part 1 By definition, the payoff is the objective function in REFER-

ENCE. This function has Hessian matrix equal to − 1

ki
Ii − 2Λi, and so is

negative definite: so the payoff is strictly concave. Since the technology

constraints are linear, we get that the first order conditions are sufficient

and necessary for optimization, and the best reply equation REFERENCE

46



still represents the equilibrium. The same equation shows that Bi ∈ [0, ki],

and Λi is continuous, so the best reply map is also continuous. So, by

Brouwer’s fixed point theorem, there exist an equilibrium.

The best reply equation and the assumption on Λ immediately allow to

conclude that the best reply is increasing in the profile of slopes of other

firms B−i. By Topkis’ Theorem, the equilibrium set is a lattice, so it has a

maximal and minimal element.

Part 2 Define BR1, BR2 :
∏

i[0, ki] →
∏

i[0, ki] the best reply maps for,

respectively, model 1 and 2. We know that for any profile B we have,

entrywise, BR1(B) > BR2(B). Call (B∗)1 the maximal equilibrium in

model 1 and (B∗)2 the maximal equilibrium in model 2. We have:

(B∗)1 = BR1((B∗)1) > BR2((B∗)1)

Since the best reply is monotonic, we have that iterating the best reply of

model 2 starting from (B∗)1 we eventually reach the maximal equilibrium:

(B∗)1 > BR2((B∗)1) > · · · > (B∗)2

which is what we wanted to show. The case of the minimal equilibrium

works analogously.

C.2 Proof of Theorem 3

1. In the unilateral case the best reply equation works differently, be-

cause it is:

max qip
′
i

s.t. q̂i+(M−B̂i)p = A. From this, we get the residual demand. But

now, instead, the prices of inputs are fixed. Only the output price is

allowed to change. For consistency, only the output quantity can af-

fect it. We can express the equations more conveniently decomposing
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the matrix M as follows:

M =

(
Mi,down Mi,down−up

M ′
i,down−up Mi,up

)

where, after reordering, Ni,up contains the subset of all goods that

are inputs of i, or all goods that are directly or indirectly connected

to inputs of i. Ni,down contains the remaining goods: the output of

i, and possibly all downstream goods that are not connected to any

inputs.

The equations involving qi are:

qi + (Mi,down − B̂i,down)p
down
i + (Mi,down,up − B̂i,down)pi,in = Ai

We can solve only for the downstream prices:

pdown
i = (Mi,down − B̂i,down)

−1
(
Ai − qi − ()pi,up

)
and we get:

pouti = [(Mi,down − B̂i,down)
−1]ii(Ai − qouti ) + const

So, the price impact is:

Λunilateral
i =

(
[(Mi,down − B̂i,down)

−1]ii 0

0 0

)

where [(Mi,down−B̂i,down)
−1]ii = [(Mii−Bii−M ′

i,downM
−1
−i,downMi,down)

−1]ii.

To compare with Λmultilateral, we have to note that we can also de-

compose Λmultilateral as:

Λmultilateral =

(( Mi,down Mi,down−up

M ′
i,down−up Mi,up

)
− B̂i

)−1


Ni

For simplicity, from now on denote the blocks of the matrix M − B̂i
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as:

M − B̂i =

(
A1 A2

A′
2 A3

)

2. Using block inversion, Λunilateral
i can also be written as:

Λunilateral
i = lim

T→∞

(A1 A2

A′
2 TA3

)−1


Ni

(37)

where Ii is the identity of appropriate dimension. But now, the matrix

on the right-hand side is positive definite, so we get that a sufficient

condition to conclude Λunilateral
i ≤ Λmultilateral

i is:(
A1 A2

A′
2 A3

)
−

(
A1 A2

A′
2 TA3

)
=

(
0 0

0 TA3

)
> 0

that is true, and so in the limit we obtain Λunilateral
i ≤ Λmultilateral

i .

3. For the case of the local market power it is immediate from the def-

inition. If q̂i + (M − B̂i)p = A, but the prices of the other markets

are to be taken as given, then the equations involving qi are:

qi + (Mi −Bi)pi +Mi,−ip−i = Ai

and, inverting, we obtain:

pi = (Mi −Bi)
−1
(
Ai − qi −Mi,−ip−i

)
and the price impact is:

Λlocal
i = (Mi −Bi)

−1,

so it is immediate to conclude:

Λlocal
i = (Mi −Bi)

−1 <
(
Mi −Bi − (M out,in

i )′M−1
−i M

out,in
i

)−1
= Λmultilateral

i ,

as we wanted to show.
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C.3 Proof of Corollary 5.1

If there is a unique final good, say good 0, then the vector A has just

one nonzero entry, corresponding to good 0. Moreover, the matrix B̂c is

composed by all zeros except a positive entry Bc,00 in the 0, 0 diagonal

place. So, the vector A − B̂cf 0,L is equal to: (A0 − Bc,00f̂0,L)A, where

A0 −Bc,00f̂0,L > 0.

So, the price can be written:

p0 =
A0 −Bc,00f̂0,L

A0

A′M−1A

Now we know that M is increasing in each Bi, and so we obtain that p0 is

decreasing in each Bi.

C.4 Proof of Proposition 2

If the firms do not take the price impact into account on input markets,

the best reply equations become:

Bi =
Λ

−1

i + (n− 1)Bi

Λ
−1

i + (n− 1)Bi + 1
where Λi =

Λout
i

1 + Λout
i

and Λout
i is increasing upstream. Hence, in equilibrium, Bi is decreasing

upstream, which means that markups are increasing.
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Supplementary Appendix: TBA
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