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1. INTRODUCTION

Quantifying macroeconomic risk has received growing attention from academics and pol-

icymakers, following the influential work of Adrian et al. (2019). Their “growth-at-risk”

framework has been applied to other indicators such as inflation or debt (e.g., Adams et al.,

2021; Lopez-Salido and Loria, 2024; Furceri et al., 2025). Most related papers use quantile

regressions with quarterly data. Some evidence suggests that multivariate models, like vec-

tor autoregressions (VARs) with heteroskedastic errors, or nonparametric versions of such

models, can improve predictive accuracy (Clark et al., 2023, 2024; Carriero et al., 2024a).

Further, using higher-frequency information to predict lower-frequency target variables has

proven useful both in single and multiple equation models (e.g., Iacopini et al., 2023; Hauzen-

berger et al., 2024; Castelnuovo and Mori, 2025).

Motivated by these aspects, we consider parametric and nonparametric versions of a

multivariate mixed frequency (MF) model in this paper. As a baseline, we use the MF

Bayesian Additive Regression Tree (MF-BART) model of Huber et al. (2023), subject to

several econometric refinements—indeed, we propose an alternative approximation step for

linearizing the underlying nonlinear state space model. Further, we provide a computation-

ally efficient, precision-based, estimation algorithm adapted from Chan et al. (2023), which

is scalable to high dimensions.

Our empirical work complements Boeck et al. (2025), who conduct a forecasting horser-

ace for predicting tail risk in Italy with a similar dataset. By contrast, our focus is on

short-horizon forecasts, nowcasts, and backcasts. The latter two are necessary due to the

significant publication lags of key variables. And instead of assessing predictions of mod-

els estimated separately for quarterly and monthly data, we rely on a joint MF framework

in an out-of-sample evaluation exercise. We pick Italy due to its high level of public debt,

where risk monitoring is especially important—but the methods are generally applicable. As

quarterly targets, we focus on the deficit- and debt-to-GDP ratios, and real GDP. Further,
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we assess monthly predictions for unemployment, industrial production and inflation. We

find MF-VARs equipped with a global-local shrinkage prior and heteroskedastic errors to

perform well in predicting upside and downside risk. MF-BART typically exhibits a compa-

rable performance to its linear competitor, although there are noteworthy gains in predictive

accuracy for some variables at several horizons. Compared with the MF-BART model of

Huber et al. (2023) our version offers improvements in predictions.

2. ECONOMETRIC FRAMEWORK

We consider nm variables ym,t on a monthly frequency, for t = 1, . . . , T , and nq variables y∗
q,t

are observed on a quarterly frequency. We model an associated latent monthly process yq,t

that is linked to the observed quarterly variables y∗
q,t with a set of intertemporal measurement

equations. Let yt = (y′
q,t,y

′
m,t)

′ be an n×1-vector (i.e., n = nm+nq), and xt = (y′
t−1, . . . ,y

′
t−p)

′

is of size k = np. Following Huber et al. (2023), we choose:

yt = F (xt) + ut, ut ∼ N (0n,Σt), (1)

as state equation, with unknown equation-specific functions fi(xt) : Rk → R for i = 1, . . . , n,

in F (xt) = (f1(xt), . . . , fn(xt))
′. We assume Gaussian errors with a proportionally time-

varying covariance matrix Σt = otΣ. The link between quarterly observed and monthly

latent variables is established with i = 1, . . . , nq, measurement equations:

y∗q,it =
1

3
yq,it +

2

3
yq,it−1 + yq,it−2 +

2

3
yq,it−3 +

1

3
yq,it−4 + ηit, ηit ∼ N (0, ω2

i ), (2)

where ηit is a measurement error with a small (deterministic) variance ω2
i , see also Chan et al.

(2023); (2) is an intertemporal restriction for log-growth rates which exists when we observe

a quarterly measure (for t = 3, 6, 9, . . .). For other transformations, it is straightforward to

adjust this restriction accordingly.
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2.1. Approximate sampling of the latent states

We cannot rely on typical methods that are used for sampling the latent states due to the

nonlinear conditional mean. Define Y = (y1, . . . ,yT )
′, F (X) = (F (x1), . . . ,F (xT ))

′ and

U = (u1, . . . ,uT )
′ which are T × n, X = (x1, . . . ,xT )

′ is T × k, and O = diag(o21, . . . , o
2
T ),

then a full-data version of (1) is:

Y = F (X) +U , vec(U) ∼ N (0Tn, (Σ⊗O)). (3)

To avoid confusing X as an argument of the function F (•) and linear projections using

X, we simply write F (X) = F below. We linearly approximate F to update the states,

following Huber et al. (2023). They use the Moore-Penrose inverse of X, X+, to recover

a linear approximation F ≈ XÃproj, where Ãproj is a k × n matrix. If X has full column

rank, X+ = (X ′X)−1X ′, and Ãproj = (X ′X)−1X ′F is the projection of the conditional

mean function on X.1 Related aspects are discussed in Crawford et al. (2018); Kowal (2022).

Huber et al. (2023) proceed with Ãproj using a filtering/smoothing algorithm, and conditional

on draws of the states, sample all other parameters.

For the sake of the argument, suppose F ≈ Y , i.e., an almost perfect fit (e.g., tree-

based implementations tend to overfit the data in-sample), then Ãproj will be close to the

OLS estimate of the matrix that contains the dynamic VAR coefficients. To reduce noise

from fitting unrestricted VARs, we assume independent auxiliary regressions, and introduce

approximation errors:2

fi(xt) = di + x′
tãi,reg + eit, eit

iid∼ N (0, ς2i ), (4)

1Note that we standardize the data before estimation, and transform any quantities back ex post.
2This regression does not interact with any other parameters (e.g., it does not affect the prior used for

sampling F , but is purely used as auxiliary approximation device). Conceptually, the projection-based

approach maximizes the R2 of the linear approximation to F , while the proposed approach trades some of

this explained variance for a modest amount of approximation error variance by regularizing Ã.
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for i = 1, . . . , n, where Ãreg = (ã1,reg, . . . , ãn,reg) contains the approximated coefficients

associated with the nonlinear conditional mean functions and d = (d1, . . . , dn)
′, D = (ιT⊗d′)

contain intercepts. That is, F = XÃreg + D + E, vec(E) ∼ N (0Tn,S ⊗ IT ) and S =

diag(ς21 , . . . , ς
2
n). Plugging this into (3), we have Y = XÃreg +D +E + U , and, omitting

the reg subscript (the following also applies to proj), obtain:

yt = d+ Ã′xt + ϵt = d+

p∑
j=1

Ãjyt−j + ϵt, ϵt = et + ut, (5)

ϵt ∼ N (0n,Σt + S), with lag-specific partitions in Ã′ = (Ã1, . . . , Ãp) for j = 1, . . . , p, and

Ãj of size n× n. Next, define Ỹ = (y−p+1, . . . ,y0,Y
′)′ and y = vec(Ỹ ′), m = vec(D′),

M =



−Ãp · · · −Ã1 In 0n×n · · · · · · 0n×n

0n×n −Ãp · · · −Ã1 In 0n×n · · · 0n×n

...
. . . . . . . . . . . . . . .

...

0n×n · · · 0n×n −Ãp · · · −Ã1 In 0n×n

0n×n · · · · · · 0n×n −Ãp · · · −Ã1 In


,

which allows to rewrite (5):

My = m+ ν, ν ∼ N (0,Ξ), (6)

where Ξ = (IT ⊗ S) + (O ⊗ Σ). Further, following Chan et al. (2023), let Sl and So

be selection matrices singling out latent (l) and observed (o) variables, such that y =

Slyl+Soyo. Substituting this expression into (6), we may write MSlyl+MSoyo = m+ν.

Chan et al. (2023) show how to derive the (approximate, in our case) distribution of the latent

variables conditional on the parameters and observed high frequency variables:

yl|yo, • ∼ N (my,Ky), (7)
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with moments Ky = (S′
lM

′Ξ−1MSl)
−1 and my = KyS

′
lM

′Ξ−1(m − Soyo). Next, we

rewrite (2) by stacking across low frequency variables:

y∗
q = Λyl + ηt, ηt ∼ N (0nl

,Ω), (8)

where Λ appropriately collects the linear intertemporal restrictions and Ω the stacked ω2
i s.

We may then combine prior (7) and likelihood (8) to derive the distribution of the states

conditional on the quarterly observations: yl|y∗
q,yo, • ∼ N (m∗

y,K
∗
y ), with moments K∗

y =

(Λ′Ω−1Λ+K−1
y )−1 and m∗

y = K∗
y (Λ

′Ω−1y∗
q+K−1

y my). Most of these matrices have specific

banded structures, or are sparse, and fast computational algorithms can be used—we rely

on precision sampling to generate a draw from p(yl|y∗
q,yo, •), which renders estimation of

large systems feasible.

2.2. Model specification, priors and estimation algorithm

The procedure described above yields a draw of the complete history of the data, {yt}Tt=1,

which we use to estimate the state equation and any other parameters. Indeed, (1) establishes

a nonlinear multivariate model (see, e.g., Marcellino and Pfarrhofer, 2024, for a review of

the related literature). That is, a Gibbs sampler that iterates between drawing the latent

states and all model parameters can be used.

When treating the conditional mean function nonparametrically, we rely on BART as

in Chipman et al. (2010). We use default priors on the equation-specific functions fi(xt)

for i = 1, . . . , n. This involves setting priors on splitting variables and thresholds, and the

terminal node parameters. Our settings for tuning parameters and the sampling steps are

identical to Huber et al. (2023). On the constant part of the covariance matrix, we impose

a hierarchical inverse Wishart prior to avoid overshrinking, see also Esser et al. (2024) and

Pfarrhofer and Stelzer (2025) in a static and dynamic multivariate model, respectively. The

resulting posterior distributions take standard forms. Further, these papers show how to
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update all BART-related parameters equation-by-equation, which we do as well. In case we

model time-varying variances, we assume that Pr(o
1/2
t = 1) = 1−p and Pr(o

1/2
t ∼ U(2, s)) =

p, where U(2, s) is a discretely uniform with support [2, s = 10], and the outlier probability

p is Beta distributed (see Carriero et al., 2024b).

Finally, in case we use auxiliary regressions for the approximation, we impose tight

inverse Gamma priors on ς2i ∼ G−1(10, 0.01). On the coefficients vec(Ãreg) ∼ N (0, λ ·

diag(τ1, . . . , τnk)), we use a horseshoe prior (HS, Carvalho et al., 2010) with a single global

parameter λ and local scalings τj. This allows for updating the approximate coefficients using

textbook results for Bayesian linear regressions. Conditional on a draw of the coefficients,

the HS-related parameters are updated using the posteriors provided in Makalic and Schmidt

(2015). Note that we implement the same HS when estimating a standard Bayesian VAR

(BVAR) assuming a linear functional form, F (xt) = A′xt.

3. MONITORING TAIL RISK IN ITALY

We conduct an out-of-sample (OOS) exercise to evaluate the predictive accuracy of a set

of popular model specifications that are nested in our framework. These competitors are:

(1) Bayesian vector autoregression (BVAR); (2) BART when estimating F (xt) using BART

(Chipman et al., 2010); these are differentiated with respect to how the linearized version

is obtained (see Section 2.1): Projection (proj), or Horseshoe (hs), when relying on (4).

Further, we compute and evaluate predictions in two ways: either using the (1) unprocessed

(raw) output of the linearized sampling step, or (2) fitting values obtained from inserting

the linearly approximated states xt into F (xt) and adding random shocks, labeled nl for

“nonlinear,” see Huber et al. (2023). Both the BVAR and BART versions are estimated

with p = 6 and either homoskedastic errors (hom, ot = 1 for all t), or outlier (o) component.
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3.1. Dataset and out-of-sample evaluation scheme

Our dataset comprises quarterly and monthly variables from Italy, ranging from January

2001 until June 2024. Specifically, our dataset is patterned after Boeck et al. (2025): Deficit-

to-GDP (Deficit) and Debt-to-GDP (Debt) ratio, and real GDP growth (RGDP) as quarterly

target variables; Unemployment (in differences), industrial production (IP, annualized log-

differences), and inflation (HICP, annualized log-differences) as monthly targets.

Further monthly predictors are Italian long-term interest rates (10-year benchmark),

the spread between Italian/German long-term government bond yields, economic sentiment

indicator, euro area short-term (3-month maturity) rates, and the USD/EUR exchange rate;

we refer to Boeck et al. (2025) for details. Inspired by the recent work of Furceri et al. (2025)

who focus on predicting “debt-at-risk,” we add several timely indicators of economic/policy

uncertainty and financial stress: a geopolitical risk indicator (GPR, Caldara and Iacoviello,

2022, link), composite indicator of systemic stress (CISS, Hollo et al., 2012, ECB data portal)

for Italy, and European policy uncertainty (EPU, Baker et al., 2016, link).

The initial training sample uses data from the beginning of the sample until January

2010. Because no history of real-time vintages is available, we truncate the final vintage, such

that it respects the release calendar (e.g., in the first month of any quarter, the numbers for

the previous two quarters and the current quarter of the debt-ratio have not been released

yet; in the second month, only the previous and current quarter are missing). This is reflected

in our results, which, on the quarterly frequency, indicate the backcasts as h ∈ {−2,−1},

the nowcast (present) as h = 0 and the forecasts (future) as h ≥ 1. Note that in terms of

the respective information sets, we assume to compute the predictions at the final day of

each month. Our competing models are re-estimated on a monthly basis, adding the most

recent available observation for each of the quarterly or monthly indicators. That is, for the

quarterly variables we have at least three predictions for the same target quarter (e.g., the

h = 0 horizon has the 1st, 2nd and 3rd month per quarter).
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3.2. Forecasting results

Tables 1 and 2 show quantile-weighted continuous ranked probability scores (CRPSs) as tail

forecast metrics. These scoring rules emphasize specific parts of the predictive distribution:

downside (left tail, CRPS-L) and upside (right tail, CRPS-R) risk, see Gneiting and Ranjan

(2011). The appendix contains results for the unweighted CRPS. The rows of the benchmark,

BVAR-hom are raw CRPSs (grey shades), all other entries are ratios to this benchmark (blue

shading: improvements, red shading vice versa; bold values indicate the best model per vari-

able and horizon). Major columns are horizons (quarters), minor columns indicate months

during the quarter. The h = −2 column contains only the 1st month indicator, because only

“Debt” and “Deficit” are missing (as does the previous quarters’ RGDP for the 3rd month

of the 1-step backcast). The predictive losses for monthly forecasts are shown in Table 3,

where horizons are on a monthly frequency.
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Table 1: CRPS-L (downside-risk) for quarterly target variables relative (ratios) to the
benchmark BVAR-hom (raw predictive losses). Major columns refer to the horizon in quar-
ters, minor columns indicate the month during the quarter the prediction was computed.
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Table 2: CRPS-R (upside-risk) for quarterly target variables relative (ratios) to the bench-
mark BVAR-hom (raw predictive losses). Major columns refer to the horizon in quarters,
minor columns indicate the month during the quarter the prediction was computed.

The BVAR equipped with heteroskedastic errors performs consistently well across vari-

ables and horizons; indeed, this is a capable model specification (see, e.g., Carriero et al.,

2015, for a related model). Improvements relative to the linear homoskedastic benchmark

are sizable in most cases, for both downside and upside risk. BART(hs)-o often exhibits

comparable losses to its linear heteroskedastic competitor. Although there are noteworthy

gains in predictive accuracy for some variables and horizons, it must be acknowledged that

especially for backcasts and nowcasts of debt, and selected forecasts of the deficit ratio, the

metrics indicate a somewhat weaker performance than the linear model. For nowcasts of the

monthly variables, the BART-variants are accurate, and best overall in a large number of

cases. The performance for forecasts is on par with BVAR-o for unemployment and industrial

production, while larger gains arise for inflation, consistent with Clark et al. (2023).

Zooming into relative performances of BART-variants, two aspects are worth noting.

First, adding the outlier component improves predictive accuracy in virtually all cases, but
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Table 3: Variants of CRPS for monthly target variables relative (ratios) to the benchmark
BVAR-hom (raw predictive losses). Major columns refer to the horizon in quarters, minor
columns indicate the month during the quarter the prediction was computed.

not as much as in models with a linear conditional mean. Second, introducing regularization

in the context of the linear approximation step (i.e., comparing the proj and hs specifi-

cations) improves upon the unrestricted projections used in Huber et al. (2023). Further,

we note that using the raw approximation output versus the nonlinearly fitted values for

predictions does not materially affect predictive losses.

4. CONCLUSIONS

We compared MF BVAR and BART models to assess their relative predictive performance in

forecasting tail risk of a set of quarterly and monthly variables for Italy. Relative to the MF-

BART model proposed in Huber et al. (2023), we propose an alternative linear approximation

step, discuss a computationally efficient estimation algorithm, and consider heteroskedastic

errors. We find these econometric refinements to yield improvements in predictive accuracy.
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Online Appendix: Nonparametric Mixed
Frequency Monitoring Macro-at-Risk

A. ADDITIONAL MATERIALS
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Figure A.1: Quarterly target variables for the out-of-sample exercise.
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Table A.1: CRPS for quarterly target variables relative (ratios) to the benchmark BVAR-
hom (raw predictive losses). Major columns refer to the horizon in quarters, minor columns
indicate the month during the quarter the prediction was computed.
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