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Identifying Electricity Consumption Patterns by Using
High-Frequency Data: Volatility and Self-Organizing Maps∗

F. Atzori, L. Corazzini, M. Guerzoni, M. Mantovani

Policy Summary
In this report, we present the results of a two-level clustering approach that combines self-organizing
maps and K-means to identify distinct household electricity consumption patterns. To address the
high dimensionality of the data and better capture both short- and long-term volatility in energy
usage, we apply a discrete wavelet transformation to the data expressed in standardized first
differences. The resulting transformed dataset serves as input for the clustering methodology.

Despite the initial homogeneity of the households in the dataset, four distinct clusters emerge,
exhibiting marked differences in energy consumption and intra-day volatility. Moreover, our anal-
ysis uncovers a strong positive association between volatility and energy usage: households in
clusters characterized by greater intra-day variability consistently consume more electricity. The
available socio-economic data further enable us to profile households in the most volatile clusters:
they are typically residents of detached houses, rely heavily on electricity for water heating, and
are subscribed to energy plans offering reduced tariffs during nighttime hours and weekends.

These findings underscore the importance of targeting consumption volatility in demand-side
management strategies. Addressing short-term fluctuations in electricity usage may be a key lever
for improving efficiency and reducing overall demand.

1 Introduction
This report documents our analysis of electricity consumption patterns in a large dataset of house-
holds in Switzerland. The objective is to identify meaningful groups of consumers based solely on
their electricity consumption behavior, using high-frequency smart meter data. This represents
the first step in a broader project aimed at improving energy efficiency among final consumers.
The insights from the segmentation exercise are intended as inputs for randomized controlled trials
(RCTs) designed to test personalized interventions to reduce energy demand.

Electricity consumption is known to exhibit both regularities and substantial heterogeneity
across households (e.g. Jones et al., 2015). Certain patterns tend to recur within specific groups of
consumers; for instance, families with children often show pronounced evening peaks, while single-
person households or remote workers may display flatter or midday-shifted usage profiles. Other
group-level differences arise from structural factors such as dwelling size, heating systems, and ap-
pliance ownership, which influence baseline consumption levels and usage timing. At the same time,
broader differences—such as in responsiveness to weather, seasonality, or price changes—highlight
the importance of behavioral variation. Capturing this complexity is essential for understanding
energy demand and designing targeted interventions that account for the diverse ways in which
households consume electricity.

A wide range of interventions has been tested to reduce residential electricity demand, from
economic incentives such as time-of-use pricing and rebates, to behavioral strategies like feedback,
social comparisons, and personalized messaging. One of the most well-known examples is the
Opower program in the United States, which delivered home energy reports comparing household
usage to that of similar neighbors, leading to persistent reductions in electricity consumption of
around 1.5–3% on average Allcott (2011). In Europe, similar approaches have gained traction.

∗We thank Affective (Torben Emmerling, Laura Fontanesi, and Daniel Seyffardt) for supporting us during the develop-
ment of the study. We thank the Swiss electricity provider for sharing ideas and giving us access to the energy consumption
dataset. We are in debt with the energy sector research for extracting and preparing the dataset used in the present study.
This study was funded by the European Union - NextGenerationEU, in the framework of the GRINS -Growing Resilient,
INclusive and Sustainable project (GRINS PE00000018 – CUP C93C22005270001). The views and opinions expressed are
solely those of the authors and do not necessarily reflect those of the European Union. The European Union can be held
responsible for them.
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In the United Kingdom, the nationwide smart meter rollout has enabled more granular feedback
and time-of-use tariffs. Trials combining smart meters with real-time feedback apps (such as the
Low Carbon London project) showed that consumers could reduce peak demand by 10–15% under
time-varying pricing, especially when supported by clear information and reminders (Schofield
et al., 2014). In Italy, where time-of-use pricing has been in place for most households since 2010,
studies show modest reductions in consumption during peak hours, but emphasize the importance
of awareness and understanding: many households were initially unaware of the tariff structure,
reducing its effectiveness. Behavioral nudges and clearer communication have since been tested
to enhance responsiveness (Torriti, 2012). In Switzerland, real-time feedback on appliance-specific
consumption, combined with environmental framing, induced significant reductions in energy use
(Tiefenbeck et al., 2018). In the Netherlands, a reputation-based mechanism was found to be
effective, while simple private communication was not (Delmas and Lessem, 2014).

These findings align with the growing consensus that one-size-fits-all approaches are suboptimal,
and that personalized, data-informed strategies can improve both engagement and energy-saving
outcomes. They also reinforce the importance of segmenting consumers to account for their diverse
behaviors and responsiveness to price and non-price signals. This report outlines the methodology
behind our novel clustering procedure, which identifies groups based solely on consumption data,
and presents the characteristics of the resulting consumer segments.

We adopt a two-level clustering approach that combines the Self-Organizing Map (SOM)
methodology with the K-means algorithm to identify energy consumption profiles and investi-
gate their determinants. The SOM methodology uncovers patterns in high-frequency consumption
data, while the K-means algorithm organizes consumers into distinct groups with similar usage
behavior. We apply this methodology to hourly electricity consumption data obtained from smart
meters installed in 6,254 Swiss households located in the canton of Zürich, covering the period from
September 1, 2023, to August 30, 2024. After identifying temporally homogeneous and recurrent
consumption clusters, we investigate their determinants, characteristics, and correlates.

We proceed in four steps. First, we transform and standardize the data. This allows us to focus
on changes in consumption over time rather than on raw levels, and to compare behavior across
households regardless of their baseline energy usage. This step is necessary because electricity
consumption levels show high variance across households and tend to follow a scale-invariant dis-
tribution. In particular, we take the first difference of the data and apply a z-score transformation
to normalize consumption across households. Our analysis is then conducted on the intra-day,
normalized volatility of electricity consumption.

Second, we further simplify the data and reduce its dimensionality in a way that captures both
short-term and long-term changes in electricity use. For this, we apply a wavelet transformation.
This technique breaks down each household’s consumption pattern into different time scales, en-
abling us to observe both rapid fluctuations and slower trends over the entire study period. A
wavelet is like a small, wiggly wave used to decompose the time series of electricity usage into com-
ponents representing different time scales—for example, daily cycles versus long-term trends. One
can think of it as zooming in and out on a map: zoomed in, you see detailed local roads (short-term
patterns); zoomed out, you see highways and city layouts (long-term trends). Wavelets decompose
the data to reveal when in time changes occur, and how significant they are—something tradi-
tional methods like Fourier transforms handle less effectively for non-repeating or irregular signals
(Percival and Walden, 2000). In our project, we use Haar wavelets, which act like a sliding window
comparing values in chunks (e.g., electricity use in the first half of an hour versus the second half)
to detect jumps or shifts. By stacking these comparisons over time, we can isolate short blips in
usage (like a kettle boiling) from broader trends (like weekday vs. weekend habits).

Third, we use each household’s wavelet-based energy pattern as input to group similar con-
sumers. We begin with the SOM methodology (Kohonen, 1990), which helps uncover natural
groupings in the data without requiring prior assumptions. SOM projects our high-dimensional
data onto a 2D grid, where each point represents a typical usage pattern, and similar households
are placed close together. The grid adapts over time to best represent the data structure. The
SOM method is data-driven and unsupervised: it identifies structure on its own and requires only
the size of the grid, not the number of desired groups. In our context, SOM maps the landscape of
energy behaviors before we define the group boundaries. Next, we apply a K-means algorithm to
draw clear boundaries and form actual clusters. The algorithm starts with a prespecified number of
clusters, assigns each data point (i.e., household) to the nearest center, and then iteratively updates
the centers until the groupings stabilize. The K-means algorithm is fast and intuitive, but can be
sensitive to initial conditions and may struggle with high-dimensional or noisy data. That’s why
combining SOM and K-means is effective: SOM provides a robust and informative initialization
for the clustering procedure. Together, they allow us to identify meaningful and reliable clusters
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of energy users.
Finally, the fourth step of our analysis examines how the clusters identified in the previous

steps differ in terms of (i) time dynamics, levels, and volatility of electricity consumption patterns,
and (ii) socio-economic characteristics of the corresponding households.

Our analysis yields three main findings. First, after addressing the issue of scale invariance,
our clustering procedure successfully identifies four distinct clusters that differ significantly in
their temporal energy consumption profiles. This is a noteworthy result, considering that our
methodology is entirely agnostic and that our dataset is relatively homogeneous due to the selection
criteria used during data collection. Second, the primary factor contributing to the formation of
well-defined clusters is the intra-day volatility in energy consumption. Third, we document a strong
relationship between volatility and overall consumption levels: households in clusters characterized
by higher volatility also tend to use more energy. In this regard, the available socio-economic
information sheds light on the main characteristics of households in highly volatile clusters: they
typically live in detached houses, make extensive use of electricity for water heating, and are
subscribed to energy contracts with reduced tariffs during nighttime hours and weekends.

2 Background
Mitigating global climate change is one of the most pressing challenges of the twenty-first cen-
tury. To keep global warming below 1.5°C, extraordinary reforms are required from governments,
industry, and communities (The Core Writing Team, 2023; Shukla et al., 2022). In addition to reg-
ulations and incentive-based policy interventions, understanding how to stimulate environmentally
friendly behavior among citizens is essential to reducing CO2 emissions. People can contribute to
climate change mitigation by adjusting their lifestyles—such as traveling more sustainably, con-
suming less, adopting a plant-based diet (Wynes and Nicholas, 2017), and, most relevant to this
report, changing their energy consumption habits.

Academic interest in behavioral approaches has grown rapidly over the last two decades. Today,
the literature evaluating behavioral interventions in energy use is vast. Classical studies (e.g.
Allcott, 2011; Allcott and Rogers, 2014) assess the impact of Home Energy Reports (HERs),
which provide households with feedback comparing their energy use to that of neighbors, alongside
conservation tips. These randomized field experiments typically demonstrate reductions in energy
consumption. While initial reports induce immediate reductions, effects tend to diminish between
report deliveries, and sustained delivery is necessary to support habit formation and persistent
behavioral change. While social nudges may, in some cases, lead to crowding-out effects, HERs
and peak-event reminders appear to have additive effects when combined, with little evidence
of negative interactions (Brandon et al., 2019). Reviews and meta-analyses broadly confirm the
positive average effects of such interventions—typically yielding 2%–4% reductions in electricity
use—yet also highlight significant heterogeneity across studies (Andor and Fels, 2018; Nisa et al.,
2019; Mertens et al., 2022; Karlin et al., 2015).

A growing body of research suggests that effective interventions must be targeted. Allcott and
Kessler (2019) consider the welfare costs borne by nudge recipients and show that the welfare gains
of HERs could double if the reports were directed at the most responsive households instead of
sent universally. Costa and Kahn (2013) demonstrate how ideological differences lead to hetero-
geneous responses to energy reports. Feedback should not only be personalized but also delivered
in real-time, when energy-intensive decisions are being made (Tiefenbeck et al., 2018). As argued
by Van Valkengoed et al. (2022), understanding the determinants of behavior is fundamental, and
interventions should be designed to address specific behavioral drivers. In this respect, tailoring
behavioral interventions to the characteristics of households and their recurring consumption pat-
terns is one of the most promising and fascinating areas for future research (Karaliopoulos et al.,
2022).

To design such interventions, one first needs to identify relatively homogeneous groups of house-
holds. Several studies have performed segmentation exercises based on electricity consumption
patterns (see the recent review in Michalakopoulos et al., 2024). Self-Organizing Maps (SOM)
have been successfully applied across a range of fields, including energy systems and time-series
analysis. In the context of electricity usage, SOM and K-means clustering have been used to group
consumers with similar behavioral patterns, identify inefficiencies in buildings, and support energy
management and policy design.

Räsänen and Ruuskanen (2008) applied SOM and K-means clustering to segment approximately
8,000 Finnish electricity customers by annual consumption patterns and building characteristics,
suggesting how segmentation can support personalized feedback. Liu et al. (2012) adopted a similar
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method and identified four distinct consumer profiles differing in average daily load, peak usage,
and seasonal patterns—offering valuable insights for tariff design and demand-side management.
Talei et al. (2023) used SOM to analyze operational data from a highly efficient office building in
Houston, USA, identifying inefficiencies with an estimated 4.6% energy-saving potential. Majidi
and Smith (2023) proposed a hybrid SOM–K-means approach to analyze smart meter data from
London households, evaluating clustering quality using silhouette scores. Abdelaziz et al. (2024)
developed a hybrid framework combining SOM with deep learning models optimized via a genetic
algorithm. Applied to public building energy data, the model improved both classification and
prediction of usage patterns, highlighting the potential of integrating SOM with modern AI tools
for smart energy management. McLoughlin et al. (2015) compared different unsupervised clustering
algorithms to group households into usage profiles and linked those to household characteristics,
showing that electricity usage can be explained by individual-level attributes. Al Khafaf et al.
(2020) proposed an entropy-based clustering index to determine the optimal number of electricity
user clusters, applying it to datasets from Australia and Ireland. Several studies compare the
performance of different clustering techniques (e.g. Chicco et al., 2006; Yilmaz et al., 2019), and
some use both smart meter and survey data for clustering (e.g. Gouveia and Seixas, 2016).

Our methodology combines three instruments: wavelet transformation, SOM, and the K-means
algorithm. While some of the studies mentioned above used subsets of these tools, none have
integrated all three. More importantly, these previous approaches typically overlook the scale-
free nature of electricity consumption distributions, clustering users based on levels of usage. In
contrast, we analyze changes in electricity consumption over time. We do so by differencing the
data and applying z-score normalization, which allows us to focus on the volatility of consumption
rather than its raw level. This approach enables the identification of behaviorally meaningful
clusters that reflect dynamic energy use patterns rather than static consumption quantities.

3 Dataset Characteristics and Pre-processing

3.1 Overview and Selection Criteria
We partnered with a Swiss electricity provider1. The dataset used in this analysis was extracted
and transferred by an energy sector research company in March 2025.

To ensure meaningful clustering, we deliberately adopted a conservative approach by select-
ing a dataset of households that is, ex ante, relatively homogeneous. Specifically, we asked the
Swiss electricity provider and energy sector research company to provide a representative sam-
ple of households drawn randomly (with stratification based on house characteristics, number of
occupants, and heating type). This sample adheres to the following selection criteria:

• Demo users and users with business tariffs are excluded;

• Households must have been clients since at least September 1, 2023;

• Electricity consumption must have been continuously recorded via a smart main meter (with
an asset type code starting with 1, indicating a residential household meter) since September
1, 2023;

• Users in the bottom decile of energy consumption are excluded.

Only households with a complete, uncorrupted time series of electricity consumption data and
socio-demographics data are included in the analysis. The resulting dataset consists of 225,460,898
electricity consumption records (in kWh) measured at 15-minute intervals from the main household
meter for 6,254 households located in the canton of Zürich, covering the period from September 1,
2023, to August 30, 2024. The mean consumption per 15-minute interval is 0.15 kWh (standard
deviation: 0.341).

Unit Time Unit N. Obs Households Mean Median Std. dev. Skewness
kWh 15-min. 225.460.898 6,254 0.154 0.05 0.341 7.68

Table 1: Descriptive statistics of the electricity consumption dataset. Statistics refers to average
energy consumption per quarter hour.

1In line with the NDA agreements made with the company, all references in this report to the electricity supply
company (hereafter “Swiss electricity provider”), his energy product (renamed as "Energy Product") and the data
management company (hereafter “energy sector research company”) have been anonymized.
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To reduce dataset size and focus on temporal dynamics, we aggregate 15-minute readings into
hourly sum:2

kWhi,h =

4∑
j=1

kWhi,h,j , (1)

where i indexes households, h denotes the hour, and j refers quarter-hour observations within that
hour.

Unit Time Unit N. Obs Households Mean Median Std. dev. Skewness
kWh Hour 225.460.898 6,254 0.617 0.226 1.26 8.21

Table 2: Descriptive statistics of the electricity consumption dataset. Statistics refers to average
energy consumption per hour.

As discussed in the introduction, we first show that scale invariance is a relevant feature of
the dataset and then transform the data accordingly. The analysis is carried out on intra-day,
normalized volatility of electricity consumption, obtained via a z-score transformation of the first
differences. Next, we apply Haar wavelet transformation at the household level to reduce dimen-
sionality and isolate both short- and long-term volatility patterns. Then, we cluster households
using SOM, followed by K-means refinement. Finally, we explore the determinants of the resulting
clusters using available household-level attributes.

3.2 Data Preprocessing
Scale Invariance. Scale invariance is a common property in distributions generated by human
behavior, characterized by heavy tails. In this context, clustering based solely on absolute levels
may obscure important temporal features such as volatility and time-of-day patterns in energy use.

A probability distribution f(x) is said to be scale-invariant if, for any positive constant c > 0,
the distribution of the transformed variable Y = cX has the same functional form:

fY (y) =
1

c
f
(y
c

)
. (3.1)

More specifically, a power-law distribution that satisfies the following homothetic relation is
scale-invariant:

f(x) ∝ x−α, for some α > 0. (3.2)

Figure 1 visualizes the scale-invariance property in our dataset through a histogram of electricity
consumption values (Figure 1a) and a log-log plot (Figure 1b). The heavy-tailed nature of the
distribution and the near-linear shape of the log-log plot provide prima facie evidence of scale
invariance.

First-difference transformation. In order to mitigate the dominance of absolute levels due
to the scale-invariance of the original data, we compute the first differences between consecutive
hourly data points:

dkWhi,h = kWhi,h − kWhi,h−1. (2)

This transformation also allows us to directly measure intra-day volatility and identify behavioral
patterns such as consumption spikes and dips.

Standardization To enhance comparability across households and account for outliers, we nor-
malize dkWhi,h using a z-score transformation:

Zi,h =
dkWhi,h − µi

σi
, (3)

where µi and σi are the mean and standard deviation of dkWhi,h for each household i. Fig-
ures 2a and 2b illustrate average hourly consumption and normalized z-scores across all households
and days.

The hourly consumption shows a typical daily pattern: lower usage in the mid-day hours and
higher consumption in the evening and early morning. The z-scores highlight periods of high
volatility, providing additional insights into consumption dynamics across time.

2The R ((Posit team, 2025)) and STATA ((StataCorp, 2025)) codes used in the following analysis are reported
in the appendix.
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(a) Density plot of electricity consumption.

(b) Log-log rank-size plot of electricity consumption.

Figure 1: Visualization of scale-invariance of electricity consumption.

4 Clustering Procedure

4.1 Discrete Wavelet Transform (DWT)
The wavelet transformation employs a flexible windowing approach that adapts over time, enabling
it to resolve low-frequency information using a window function whose radius increases with time
(and decreases with frequency). As a result, it provides fine time resolution for short-duration,
high-frequency components, and fine frequency resolution for long-duration, low-frequency com-
ponents. Through multi-resolution decomposition, data, functions, or operators can be separated
into components of different scales.

Various wavelet types have been proposed for different analytical goals. For instance, complex
wavelets such as the Morlet wavelet are well-suited for analyzing periodic or scale-specific time
series, while real-valued wavelets like the Mexican hat and Haar wavelets are more appropriate for
detecting discontinuities, singularities, or abrupt signal changes.

We employ the Haar DWT for dimensionality reduction, enabling efficient representation of
signal data in a compact form that supports subsequent analysis. DWT is particularly effective in
capturing essential signal features across multiple frequency scales, simplifying the original data
while preserving its key characteristics.

The core concept behind wavelet analysis is to express a signal as a linear combination of func-
tions derived from a single "mother wavelet," alongside scaling functions. This framework allows
wavelets to simultaneously capture frequency and temporal information, making them especially
suitable for analyzing non-stationary signals or those exhibiting abrupt shifts. Unlike the Fourier
transform, which uses infinitely extended sine and cosine waves, wavelets have finite support,
enabling localized and accurate identification of temporal changes in signals.

In our analysis, we apply DWT to a sequence of standardized hourly measurements, Zi,h,
at the household level, decomposing the signal into approximation coefficients Ci(k; j0) and detail
coefficients Γi(k; j0). The approximation coefficients capture low-frequency components and overall
signal trends, whereas the detail coefficients represent high-frequency components and localized
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(a) Hourly average consumption.

(b) Z-scores of hourly consumption differences.

Figure 2: Average electricity consumption by hour of day.

variations. Mathematically, this decomposition is described as:

Ci(k; j0) =

N∑
h=1

Zi,h ϕh(k; j0), k = 1, . . . ,K, (4)

Γi(k; j0) =

N∑
h=1

Zi,h ψh(k; j0), k = 1, . . . ,K, (5)

where:

• h indexes the hourly measurements, ranging from 1 (corresponding to the first hour, 00:00–01:00
on September 1, 2023) to N (the final hour, 23:00–00:00 on August 31, 2024);

• Ci(k; j0) and Γi(k; j0) denote the approximation and detail coefficients, respectively, for
household i;

• ϕh(k; j0) and ψh(k; j0) represent the scaling and wavelet functions associated with decompo-
sition level j0 and coefficient index k;

• the decomposition level j0 is chosen as the maximum admissible level that can be applied
consistently across all households in the dataset.

The combined use of standardized signals (Zi,h), rather than raw energy consumption com-
pressed into wavelet coefficients, offers several advantages. First, it reduces the dominance of
absolute magnitudes, making frequency analysis more robust. Second, it enhances the detection of
abrupt changes, as standardized signals clearly highlight sudden variations. Finally, it enables the
capture of patterns at various temporal resolutions, thereby providing deeper insights into signal
behavior.

Through recursive decomposition, the DWT efficiently produces a compact set of coefficients
suitable for further analysis. Specifically, our analysis yields a total of 8,745 detail coefficients,
which are subsequently used as input data in the next section for cluster analysis.

Table 3 represents the decomposition of a one-year time series into different time-scale com-
ponents using wavelet analysis. Each row in the table corresponds to a different level j of the
decomposition, where the number of coefficients is calculated as:
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Γi(k; j0) ≈
8745

2j
.

This division by two is motivated by the fact that the wavelet transformation, applied recursively,
starts with the original hourly data (8,745 hours in a year) and applies a pair of filters—a low-
pass filter for the approximation (the “slow” or low-frequency part) and a high-pass filter for the
details (the “fast” or high-frequency part). After filtering, the algorithm downsamples the results
by retaining every other sample (one in, one out), as adjacent samples are considered redundant.
This downsampling halves the number of observations at each level. We can therefore interpret
the coefficients as follows:

• Level 01 (j = 1: With 8745
21 ≈ 4372 coefficients, this level captures the finest scale of the data,

reflecting hourly variations.

• Level 02 (j = 2: With 8745
22 ≈ 2186 coefficients, it represents variations occurring approxi-

mately every 4 hours (sub-daily changes).

• Level 03 (j = 3): With 8745
23 ≈ 1093 coefficients, this level approximates the day/night

transition.

• Level 04 (j = 4): With 8745
24 ≈ 547 coefficients, the decomposition captures daily variations

in the data.

• Levels 05–10 (j = 5, . . . , 10): These levels capture progressively coarser scales of the data,
corresponding to multi-day trends, weekly patterns, bi-weekly trends, monthly fluctuations,
and seasonal or quarterly variations.

Level j Γi(k; j0) Ci(k; j0) Explanation
01 8745/21 ≈ 4372 - Hourly variation
02 8745/22 ≈ 2186 - 4-hour change (sub-daily)
03 8745/23 ≈ 1093 - Approximate day/night transition
04 8745/24 ≈ 547 - Daily variation
05 8745/25 ≈ 273 - Multi-day trends
06 8745/26 ≈ 137 - Short-term trend
07 8745/27 ≈ 68 - Weekly patterns
08 8745/28 ≈ 34 - Bi-weekly trends
09 8745/29 ≈ 17 - Monthly fluctuations
10 8745/210 ≈ 9 A10 ≈ 9 Seasonal/quarterly trends

Table 3: Temporal granularity of the wavelet coefficients, ranging from the highest frequency (two-
hourly) to the lowest frequency.

In summary, the table not only displays the number of coefficients at each decomposition
level but also associates these levels with the specific time scales they represent. This wavelet
decomposition enables analysis of the data at various resolutions, ranging from high-frequency
hourly variations to lower-frequency seasonal trends.

4.2 Self-Organizing Maps (SOM)
SOM is a type of neural network particularly well-suited for clustering and visualizing high-
dimensional data. The SOM algorithm maps input data onto a two-dimensional grid of neurons,
producing a structured and intuitive representation. A typical SOM consists of an input layer
and a Kohonen layer: each unit in the Kohonen layer (usually arranged in a 2D grid) represents
a weight vector that competes during the training process to best match the input data. The
SOM learns through competitive learning, where the best-matching unit (BMU) is updated along
with its neighborhood, preserving the topological relationships of the input space on the output
map. This feature makes SOM especially effective for visualizing complex data structures and for
identifying clusters or patterns that may not be apparent in the raw data.

Given the set of wavelet detail coefficients Γi(k; j0), a grid of neurons is selected (a 20 × 20
grid, considering the dataset size), where each neuron represents a point in the data space3. Each
neuron has a fixed position on the SOM grid and an associated weight vector w, which has the

3The choice of grid size depends on the number of observations and the desired output resolution. A 20×20 = 400
grid is appropriate given the size of the dataset, and 400 points provide a suitable basis for the subsequent K-means
analysis.
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same dimension as the input data (i.e., the number of wavelet coefficients). In this specific case,
given the length K of the coefficients, each neuron n, with n = 1, . . . , N , will have a weight vector:

wn = (w1, w2, . . . , wK) .

The SOM proceeds iteratively by presenting each observation from the dataset to the model
one at a time. Each time a new data point is introduced to the SOM, every neuron computes the
distance between its weight vector and the input vector. The neuron with the closest weight vector
is identified as the Best Matching Unit (BMU); subsequently, the weights of the BMU, as well as
those of its neighboring neurons on the grid, are updated according to the following equation:

wn(t+ 1) = wn(t) + η(t) · hw̃,n(t) ·
(
x− wn(t)

)
(6)

where:

• wn(t) is the weight vector of neuron n at time t;
• η(t) is the learning rate, which is decreasing over time.
• hc,n(t) is the neighborhood function centered on the winning neuron w̃;
• x is the input vector (wavelet coefficients).

After a predetermined number of iterations (1000 in this case), the algorithm terminates. The
output of SOM includes, among others, two essential visualizations:

• Training Progress: Figure 3a shows how the difference between neuron weights and the
corresponding input samples decreases over the course of the iterations, eventually converging
toward a minimum value. This behavior indicates effective SOM training.

• Neuron Counts: Figure 3b illustrates the distribution of samples across neurons. An ideally
uniform distribution suggests that the grid size is appropriate. Only one neuron remains
unassigned, further supporting the adequacy of the chosen map size.

The two-dimensional topology of SOM is significant as it visually preserves the proximity
relationships among data points, effectively representing similar consumption patterns near each
other on the grid. Subsequently, rather than using raw data, we input the representative vectors
of each of the 400 SOM clusters as initial conditions to the K-means algorithm. This approach
solves the problem of sensitivity to initial conditions. Additionally, leveraging the SOM topology,
the resulting K-means clusters can be intuitively visualized within the structured two-dimensional
space generated by SOM.

(a) Training Progress (b) Neurons Counts

Figure 3: SOM Visualisation

4.3 K-Means Analysis
K-means is a widely used unsupervised clustering algorithm that partitions a dataset into k clusters
by minimizing the within-cluster variance. The algorithm iteratively assigns each data point to the
nearest cluster centroid and then updates the centroids based on the current assignments. Despite
its simplicity and efficiency, K-means suffers from two notable limitations. First, it is sensitive to the
initial placement of centroids, which can lead to convergence to local minima rather than the global
optimum. This implies that different runs of the algorithm may yield different results depending
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on the initialization. Second, K-means operates in the original input space, which can hinder
result interpretation, especially in the presence of high-dimensional or noisy data. In particular,
the algorithm offers limited support for visualizing the clustering structure in a meaningful way.

After training the SOM, we apply the K-means clustering algorithm to classify the identified
energy consumption patterns. Specifically, the representative vectors (or codebook vectors) derived
from the SOM are used as inputs for K-means clustering. Each of these vectors corresponds to
the weight vector of a neuron and represents a distinct pattern captured by the SOM. Combining
K-means with SOM provides a robust solution to the aforementioned issues. By first projecting the
high-dimensional input data onto a two-dimensional topological map via the SOM, the intrinsic
structure of the data is preserved and visualized more effectively. The SOM organizes similar
data points into neighboring regions of the grid, reducing dimensionality and noise. When K-
means is subsequently applied to the SOM output — typically the weight vectors or activation
patterns — the initialization problem is mitigated due to the pre-structured nature of the input,
and the resulting clusters become easier to interpret both numerically and graphically. This hybrid
approach thus leverages the strengths of both methods: the topology-preserving mapping of SOM
and the compact cluster formation of K-means.

The primary objective of the K-means algorithm in this context is to partition the SOM pro-
totype vectors into groups by minimizing the variance within each cluster. Initially, each vector
is assigned to the nearest cluster centroid based on Euclidean distance. The algorithm then itera-
tively recalculates the centroids as the average of all vectors assigned to each cluster. This process
continues until the cluster assignments converge, indicating that the clusters have stabilized.

4.4 Determining the Optimal Number of Clusters
An essential step in clustering analysis is determining the appropriate number of clusters. To this
end, we employ two complementary methods: the elbow technique and silhouette analysis.

The elbow technique visually assesses the optimal number of clusters by plotting the explained
variance as a function of the number of clusters. The optimal number corresponds to the point
where the rate of increase in explained variance begins to level off significantly. As shown in
Figure 4, we identify four clusters as the optimal choice, since adding more clusters beyond this
point yields only marginal improvements.

Figure 4: Elbow Method Result

To further validate this result, we perform a silhouette analysis. Specifically, the silhouette
score quantifies how well each point is assigned to its cluster by comparing its cohesion (similarity
with elements of the same cluster) to its separation (dissimilarity with elements of the nearest
neighboring cluster). For each point p, the silhouette score s(p) is defined as:

s(p) =
b(p)− a(p)

max{a(p), b(p)}
where a(p) is the average distance between point p and all other points in the same cluster (intra-

cluster distance), and b(p) is the minimum average distance between point p and the points in any
other cluster (nearest-cluster distance). The resulting score ranges from −1 to 1, where a value close
to 1 indicates that the point is well clustered, a value near 0 suggests it lies between two clusters,
and negative values imply misclassification. As illustrated in Figure 5, the highest silhouette score
is achieved with four clusters, confirming the result suggested by the elbow technique.
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Figure 5: Silhouette Score Results

5 Analysis of the Clusters

5.1 Identified Clusters and SOM Visualization

Cluster Mean Hourly SD Hourly Unique ID Count
1 0.842 1.25 336
2 0.600 1.27 5291
3 0.818 1.35 353
4 0.812 1.20 274

Table 4: Statistics by cluster

The final clustering results are visualized directly on the trained SOM. Figure 6a clearly illustrates
the spatial distribution of the four clusters identified by K-means on the SOM grid. One large
cluster (cluster 2, colored in green, comprising 5,291 households) covers a significant portion of
the map, while three smaller clusters — cluster 1 (blue, 336 households), cluster 3 (sand, 353
households) and cluster 4 (cyan, 274 households) — occupy distinct and separate regions. Notably,
the clusters display clear spatial coherence, although one neuron from the cyan cluster appears
slightly displaced near the blue cluster, further confirming the robustness of the clustering approach.

Additionally, Figure 6b presents the U-Matrix, which visually represents the distances between
neurons on the map. Warmer colors indicate shorter distances (i.e., greater similarity between
neurons), while cooler colors represent larger distances (i.e., lower similarity). This visualization
aids in interpreting cluster boundaries and assessing their compactness and separation.

(a) SOM Mapping with 4 Clusters (b) UMatrix: Distance between neurons

Figure 6: SOM results and visualisation
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5.2 Differences in Energy Consumption Patterns Across Clusters
We now examine differences in energy consumption time patterns across the four clusters identified
through the two-step procedure described in the previous subsections.

Figure 7 shows, for each cluster, the evolution of mean of Zi,h over time.

Figure 7: Mean of Zi,h in the four clusters over time.

Two main observations emerge from the analysis. First, Z-scores are more volatile in clusters
1, 3, and 4 than in cluster 2. Second, we observe marked seasonal differences in volatility across
these clusters. In particular, the most notable contrast occurs between cluster 1 and cluster 4:
while cluster 1 exhibits high volatility from late autumn to early spring and more stable patterns
during the rest of the year, cluster 4 shows the opposite — greater volatility from late spring to
early autumn.

These differences are further illustrated in Figure 8, which shows the average energy consump-
tion levels for each cluster during four representative weeks — one for each season (January 14–21;
April 7–14; June 30 – July 6; September 30 – October 6). The conclusions remain robust when
alternative weeks are selected.

Figure 8: Average energy consumption levels of the four clusters in the four representative weeks.
The week begins on Monday and ends on Sunday. In the graph, there is an extra day on the x-axis
to represent midnight between the two days.

The graphical analysis of hourly consumption variations across the clusters allows us to draw
several key conclusions. First, it confirms the presence of season-specific volatility patterns, par-
ticularly for clusters 1 and 4. Specifically, cluster 1 displays greater consumption variability during
the January week compared to July, while cluster 4 shows the reverse trend — greater stability
in January and higher volatility during the summer week. Second, the analysis highlights recur-
ring daily peaks in energy consumption, especially in clusters 1, 3, and 4, which are consistently
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observed across seasons.
A more detailed intraday analysis, presented in Figure 9 and based on the Fridays of the

representative weeks as reference days, reveals that these peaks tend to occur during nighttime
hours, particularly for clusters 1 and 4. During daytime and typical working hours, the differences
between clusters become less pronounced.

Figure 9: Average intraday energy consumption profiles for the four clusters, based on Fridays
from the four representative weeks

To further validate these insights, we analyze the wavelet detail coefficients that most effectively
distinguish between clusters in the SOM output. To rigorously identify the coefficients driving
inter-cluster differences, we compute the centroid vectors — defined as the average weight vectors
representing the characteristic patterns of each cluster. We then calculate the squared differences
between the centroid vectors across clusters, focusing on comparisons of clusters 1, 3, and 4 with
respect to cluster 2. This allows us to quantify the divergence for each detail coefficient and
determine at which temporal scales the differences are most pronounced.

Figure 10 illustrates, across decomposition levels j = 1, . . . , 10, the distribution of squared
differences in wavelet detail coefficients between cluster 2 (the reference cluster) and each of the
remaining clusters: cluster 1, cluster 3, and cluster 4. For simplicity, each graph is labeled with
the number of the cluster being compared to the reference group.

Figure 10: Distribution of squared differences in wavelet detail coefficients between clusters 1, 3,
and 4 and the reference cluster 2, across decomposition levels j = 1, . . . , 10.

As illustrated by Table 3, at lower levels (e.g., j = 1 or j = 2), the detail coefficients capture
high-frequency components, such as hourly or sub-daily variations. As the level increases, the
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wavelet decomposition isolates lower-frequency trends, including weekly, bi-weekly, and seasonal
patterns. Therefore, larger squared differences at a given level suggest greater dissimilarity between
the two clusters at that specific time scale.

The main result shown by Figure 10 is that, for all three pairwise comparisons, the distribution
of squared differences in wavelet detail coefficients at level 1 exhibits the highest number of points
with extremely large values. This suggests that the differences between clusters are primarily
driven by high-frequency components.

5.3 Robustness Analysis: Evaluating the Effect of Re-Clustering
Despite the ex-ante homogeneity of the households due to the selection criteria, the clustering
analysis successfully identified four distinct groups exhibiting substantially different energy con-
sumption patterns over time. Among these, cluster 2 is the largest, encompassing approximately
85% of the households.

As a robustness check to validate our clustering approach, we repeat the analysis using the
SOM (with a training length of 500 iterations) and K-means (with 100 initializations), starting
with a re-clustering of the households originally assigned to cluster 2. We then iteratively apply the
same procedure to the largest resulting cluster from each step, continuing until further partitioning
fails to reveal meaningful or interpretable subgroups.

After two iterations, the process converges to a final scenario (illustrated in Figure 11) consisting
of only two clusters. The first cluster comprises 1,476 households and is characterized by an
average hourly energy consumption of 0.212 kWh (standard deviation: 0.355), while the second
cluster includes 3,346 users with an average hourly energy consumption of 0.105 kWh (standard
deviation: 0.218).

(a) SOM Mapping (b) SOM Counts

Figure 11: Results of the re-clustering robustness check.

Relative to the initial results, the final implementation of the analysis exhibits limited explana-
tory power and a substantial deterioration in the quality of household segmentation.

First, the silhouette score significantly declines, reaching a value of only 0.0562 in the last
iteration, suggesting that the clustering becomes less meaningful. As a benchmark, consider that
the average silhouette score across cluster numbers from two to ten in the initial clustering is 0.21,
which drops to just 0.03 in the final repetition.

Second, the sum of squared distances also drops sharply — from 532,200.5 in the first iteration
to 13,401.49 in the second (and final) one — indicating a much smaller contribution of the additional
clustering step to the overall clustering quality.

6 Clustered Energy Use and Socio-Economic Drivers
As previously mentioned, our clustering approach is entirely data-driven and model-agnostic.
Therefore, to better interpret the resulting clusters, it is essential to examine the specific char-
acteristics of the corresponding households and assess whether the identified groups differ along
relevant socio-economic dimensions.

To this end, for those households that provided explicit informed consent for research purposes,
the Swiss electricity provider supplied the following socio-economic information: (i) type of housing
associated with the energy contract, (ii) property ownership status, (iii) number of occupants, (iv)
type of space heating, (v) type of water heating, (vi) household postal code, and (vii) electricity
product specified in the household’s contract.

Building on this information, the following analysis proceeds in two steps. First, we descriptively
examine the socio-economic profiles of the four clusters and assess, through parametric methods,
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to what extent these variables explain the segmentation produced by the clustering. Second, con-
trolling for socio-economic characteristics, we investigate whether there are significant differences
in electricity consumption levels, kWhi,h, across the clusters.

6.1 A Socio-Economic Characterization of the Identified Clusters: De-
scriptive and Parametric Evidence

Table 5 reports the socio-economic characteristics of the full sample, as well as for each cluster
individually.4

Overall Cluster 1 Cluster 2 Cluster 3 Cluster 4

Composition and Energy Consumption
N. Households 6254 336 5,291 353 274
KWhi,h 0.768 0.842 0.600 0.818 0.812

(1.26) (1.25) (1.27) (1.35) (1.20)

Demographics
Occupants 2.55 2.57 2.54 2.64 2.62

(1.07) (1.04) (1.07) (1.08) (1.07)
Building age 45.23 54.43 44.51 43.25 49.94

(43.76) (57.10) (42.35) (47.51) (44.89)

Housing Characteristics
Property (Owner) 77.14% 84.64% 75.48% 89.33% 84.47%
Property (House) 62.42% 78.26% 59.37% 80.79% 78.41%

Energy Product
Energy Product 1 79.37% 89.86% 77.56% 84.45% 94.70%
Energy Product 2 15.35% 6.67% 16.89% 10.06% 3.03%
Heating
Heat Pump 48.94% 51.75% 47.73% 62.81% 52.29%
Fossil Fuels 35.37% 37.72% 35.44% 30.31% 37.02%
Electric 2.79% 2.92% 2.94% 1.56% 1.15%
Other 12.90% 7.90% 13.89% 5.31% 9.54%
Water Heating
Heat Pump 34.89% 12.51% 38.34% 19.06% 15.27%
Fossil Fuels 19.96% 2.92% 23.06% 1.25 3.82%
Electric 27.54% 78.36% 18.73% 75.31 76.72%
Other 17.61% 6.14% 19.87% 4.38% 4.20%

Table 5: Socio-economic characteristics (with standard deviation in parentheses when applicable)
of the households in the identified clusters.

Cluster 2, the largest in size, is associated with the lowest average hourly electricity consumption
(0.600 kWh), while cluster 3 exhibits the highest average consumption (0.818 kWh) as well as the
largest standard deviation (1.35), indicating greater variability within the group.

The average number of household occupants remains relatively stable across clusters, with
cluster 3 showing a slightly higher value. Cluster 2 stands out for having the lowest percentage of
homeowners (75.48%) and the lowest share of houses (59.37%) relative to apartments. In contrast,
cluster 3 has the highest proportion of both homeowners and houses. No particularly notable
differences emerge between clusters 1 and 4 in this regard.

In terms of energy product choices and related behaviors, cluster 2 shows the lowest proportion
of households subscribed to the Energy Product 1 contract, whereas cluster 4 exhibits the highest
share of subscribers to this energy product. Moreover, cluster 4 also records the highest percentage
of households subscribed to the Energy Product 2 contract.5

4The number of households, as well as the mean and standard deviation of KWhi,h reported in each column,
refer to the complete dataset (6,254 households) used to construct the four clusters. The remaining descriptive
statistics on socio-economic dimensions, along with the parametric analysis presented below, refer to the 6,093
households (342 in cluster 1, 5,169 in cluster 2, 320 in cluster 3, and 262 in cluster 4) for which the selected complete
socio-economic information is available.

5Energy Product 1 is a specific energy contract that applies a standard tariff rate (HT) from 7:00 am to 8:00
pm on weekdays (Monday to Friday), and a reduced tariff rate during nighttime hours and weekends. The Energy
Product 2 contract applies a tariff scheme paid by grid operators to generators for electricity fed into the public
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Regarding house heating, heat pumps represent the most common technology in the dataset. In
this dimension, cluster 2 again stands out for having the lowest proportion of households equipped
with a heat pump.

Finally, interesting differences emerge with respect to water heating. Cluster 2 records the
highest percentage of households using a heat pump and the lowest using electricity for water
heating. The opposite holds for clusters 1, 3, and 4: they rely more heavily on electricity for water
heating and show a lower percentage of households with heat pumps compared to cluster 2.

We now proceed to a parametric assessment of these observed differences using a multinomial
logit model. The model estimates how socio-economic characteristics influence the likelihood of
a household belonging to clusters 1, 3, or 4, relative to cluster 2 — which serves as the reference
category due to its large size and representativeness. To enhance the interpretability of the results,
we adopt a parsimonious specification of the model by selecting a subset of relevant independent
variables. The estimation results are presented in Table 6.

Cluster 1 Cluster 3 Cluster 4
Energy Product
Energy Product 1 1.421*** 1.041*** 2.149***

(0.202) (0.172) (0.284)
Heating
Heat pump 0.070 0.157 -0.083

(0.148) (0.154) (0.160)
Electric -1.057*** -1.807*** -2.876***

(0.355) (0.475) (0.606)
Water Heating
Heat pump 0.219 1.185*** 0.703**

(0.280) (0.154) (0.160)
Electric 2.814*** 3.447*** 3.160***

(0.227) (0.282) (0.261)
Household
Number of occupants -0.071 -0.062 -0.037

(0.061) (0.062) (0.068)
Renter (vs. Owner) 0.041 -0.152 0.055

(0.831) (0.474) (0.788)
House (vs. Apartment) 0.694*** 0.667*** 0.753***

(0.184) (0.183) (0.198)
Building > 1989 0.166 0.558*** 0.214

(0.137) (0.140) (0.145)
Constant -5.665*** -6.283*** -6.992***

(0.336) (0.368) (0.408)
Observations 6,093
Pseudo R-squared 0.2080
LR− χ2 1163.67
Prob > χ2 0.0000

Notes. This table reports estimates (robust standard errors in paren-
theses) of a multinomial regression. The dependent variable is the
cluster identifier of the household (cluster 2 is the reference category).
Apart from the number of occupants, all of the remaining independent
variables are dummies built by using the available socio-economic in-
formation at the household level. Significance levels are denoted as
follows: ***p<0.01, **p<0.05, *p<0.1.

Table 6: Multinomial Logit Regression.

Subscribing to the Energy Product 1 contract increases the probability of transitioning from
the reference category (cluster 2) to any of the other three clusters.

With regard to house heating, using electricity acts as an attractor for the reference category,
as it increases the probability of moving from clusters 1, 3, or 4 to cluster 2. However, the effect
of using electricity changes when it is employed for water heating. In this case, it increases the
likelihood of transitioning from cluster 2 to any of clusters 1, 3, and 4. Conversely, the use of a
heat pump for water heating significantly increases the probability that a household belongs to
clusters 3 or 4, relative to cluster 2.

Turning to housing characteristics, residing in a house (as opposed to an apartment) raises the
likelihood of being in any of the other three clusters compared to the reference category.

The effect of building age is more nuanced. Living in a newer building significantly increases
the probability of belonging to cluster 3 rather than cluster 1, as indicated by the positive and
statistically significant coefficient for cluster 3. However, the impact on cluster 2 is less clear-cut.

grid from private systems, such as photovoltaic installations. For systems with a capacity of less than 100 kW, the
tariff is generally market-based and may vary depending on the operator and prevailing market conditions.
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Although the coefficient for cluster 2 is negative—suggesting that newer buildings may reduce the
likelihood of being in cluster 2 compared to cluster 1—the effect is only marginally significant.
This indicates that the result should be interpreted with caution. Therefore, while building age
has a strong and reliable influence on the likelihood of belonging to cluster 3, its effect on cluster
2 is weaker and less robust.
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6.2 Cluster-Based Energy Use Differences
The final part of the analysis explores differences in energy consumption levels across clusters over
time through a parametric approach. To manage the high dimensionality of the dataset, regressions
are estimated using data from the four representative weeks only. Table 7 reports the results from
a set of random effects panel regressions, where the dependent variable is the energy consumption
level, kWhi,h.

From the first five columns, we find that, relative to the reference category (Cluster 2), all other
clusters are associated with higher levels of energy consumption. This effect proves to be robust
across the representative weeks, with the exception of the winter period, during which the coeffi-
cients remain positive but are not statistically significant. Interestingly, column (5) indicates that
the winter week is also associated with the highest overall level of energy consumption throughout
the year.

As extensively discussed in the clustering analysis, the clusters differ significantly in terms of
the volatility of energy consumption over time. Moreover, we have shown that intra-day volatility
represents the main dimension exploited by the SOM procedure to group households. Based on
these findings, it is reasonable to expect a positive relationship between energy consumption and
its volatility.

To test this hypothesis, we introduce a measure of intra-day volatility in energy consumption,
denoted as Zabs

i,h , which is defined analogously to Zi,h but takes the absolute value in the numerator
(Figure 12):

Zabs
i,h =

|dkWhi,h − µi|
σi

(7)

By ensuring that the distance from the mean is always positive, Zabs
i,h captures how much an

observation deviates from the individual mean in terms of standard deviations, regardless of the
direction (positive or negative). The following figure replicates Figure 12, this time using Zabs

i,h to
emphasize intra-day volatility.

Figure 12: Mean of Zabs
i,h in the four clusters over time.

In line with the observations made for Figure 7, clusters 1, 3, and 4 exhibit higher levels of
volatility compared to cluster 2. Moreover, the volatility of energy consumption in clusters 1 and 4
displays a pronounced seasonal pattern: in cluster 1, volatility is elevated between November 2023
and April 2024, whereas in cluster 4, the most volatile periods are September–November 2023 and
April–August 2024.
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Table 7: Energy consumption levels across clusters and volatility: parametric results

Dependent variable: hourly

Winter Spring Summer Autumn Gen1 Winter Spring Summer Autum Gen2
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Cluster 1 0.300∗∗∗ 0.265∗∗∗ 0.200∗∗∗ 0.219∗∗∗ 0.246∗∗∗ 0.061 0.105∗∗∗ 0.078∗∗∗ 0.083∗∗∗ 0.082∗∗∗
(0.075) (0.033) (0.028) (0.028) (0.037) (0.059) (0.026) (0.021) (0.023) (0.027)

Cluster 3 0.307∗∗∗ 0.227∗∗∗ 0.147∗∗∗ 0.203∗∗∗ 0.221∗∗∗ 0.118∗∗ 0.078∗∗∗ 0.037∗ 0.080∗∗∗ 0.078∗∗∗
(0.074) (0.032) (0.028) (0.028) (0.036) (0.058) (0.025) (0.021) (0.022) (0.027)

Cluster 4 0.166∗∗ 0.244∗∗∗ 0.230∗∗∗ 0.225∗∗∗ 0.216∗∗∗ 0.065 0.098∗∗∗ 0.105∗∗∗ 0.089∗∗∗ 0.089∗∗∗
(0.083) (0.036) (0.031) (0.031) (0.040) (0.065) (0.029) (0.024) (0.025) (0.030)

Week 15 −0.540∗∗∗ −0.523∗∗∗
(0.001) (0.001)

Week 27 −0.666∗∗∗ −0.649∗∗∗
(0.001) (0.001)

Week 40 −0.633∗∗∗ −0.614∗∗∗
(0.001) (0.001)

Constant 1.050∗∗∗ 0.513∗∗∗ 0.396∗∗∗ 0.425∗∗∗ 1.056∗∗∗ 2.684∗∗∗ 0.596∗∗∗ −0.073∗∗ 0.087∗∗ 1.270∗∗∗
(0.018) (0.008) (0.007) (0.007) (0.009) (0.091) (0.040) (0.033) (0.035) (0.042)

Controls No No No No No Yes Yes Yes Yes Yes
Observations 1,050,672 1,050,672 1,050,672 1,050,672 4,202,688 1,023,624 1,023,624 1,023,624 1,023,624 4,094,496
F Statistic 33.843∗∗∗ 143.698∗∗∗ 118.948∗∗∗ 148.704∗∗∗ 263,720.500∗∗∗ 3,810.566∗∗∗ 2,858.640∗∗∗ 1,888.264∗∗∗ 1,906.556∗∗∗ 257,611.300∗∗∗

Notes. This table reports estimates (robust standard errors in parentheses) of random effects panel models performed in the four representative weeks. The dependent variable is kWhi,h. Cluster 1,
3, and 4 are dummies that assume a value of 1 in the corresponding cluster and 0 o/w (cluster 2 is the reference category). Spring, Summer, and Autumn are dummies that assume a value of 1 in
the corresponding representative week and 0 o/w. Significance levels are denoted as follows: ***p<0.01, **p<0.05, *p<0.1.
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7 Conclusion
We present the results of a two-level clustering approach that combines Self-Organizing Maps
(SOM) with the K-means algorithm to identify energy consumption profiles and analyze their
underlying determinants. Despite the strong ex-ante homogeneity of the households in our dataset
— primarily due to the restrictive and conservative selection criteria adopted during data extraction
— our analysis successfully identifies four distinct household clusters.

We further characterize these clusters by examining differences in both energy consumption
levels and intra-day volatility. In this regard, our findings indicate that, relative to the larger
and more homogeneous reference category (cluster 2), households in the remaining three clusters
exhibit significantly higher energy consumption levels and greater intra-day consumption volatility.
This evidence points to a positive association between volatility and energy use — a relationship
that is formally confirmed through parametric analysis controlling for relevant household-level
socio-economic factors.

In essence, our data-driven and agnostic clustering approach uncovers a novel behavioral in-
sight that warrants further investigation: volatility in electricity use appears to be a key driver of
elevated energy consumption, not merely a correlated outcome. One plausible explanation lies in
appliance-induced variability: households exhibiting greater consumption fluctuations are likely op-
erating a wider array of high-power appliances—such as electric ovens, heating systems, or washing
machines—whose intermittent usage contributes to both short-term spikes and persistently higher
energy demand. Similarly, behavioral complexity in high-consumption households suggests that
more intensive electricity use corresponds to a broader range of individual routines and preferences,
which generate frequent quarter-hourly variations that accumulate over time.

Moreover, electrified households tend to experience sharper peaks and troughs in demand,
particularly when electricity is used for heating, cooking, or vehicle charging—activities that in-
herently introduce cyclical consumption patterns and reduce efficiency in demand responsiveness.
Additionally, automated systems (e.g., smart thermostats or scheduled appliances) may further
amplify these short-run variations, reinforcing the structural link between volatility and elevated
energy use.

Taken together, these explanations suggest that volatility is not simply a byproduct of con-
sumption behavior, but rather a key determinant of it. As such, future research should explore
how demand-side management strategies might address consumption volatility as a pathway to
improving energy efficiency and reducing household electricity demand.
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Appendix

Code
Where not otherwise indicated, the software used for data analysis is R(Posit team, 2025) otherwise is Stata®(StataCorp,
2025).

#R Studio
R version 4.4.2 (2024-10-31 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 10 x64 (build 19044)

#STATA
StataNow/MP 18.5 for Mac (Apple Silicon)
Revision 26 Feb 2025
Total physical memory: 18.00 GB
version 18.5
. display "`c(os)'"
MacOSX
. display "`c(osdtl)'"
15.3.2
. display "`c(stata_version)'"
18.5

Packages

# Packages
library(tidyverse); library(dplyr); library(data.table); library(lubridate)
library(sf); library(stringi); library(ggplot2); library(viridis)
library(RColorBrewer); library(scales); library(wavelets)
library(NbClust); library(cluster); library(factoextra); library(kdensity)
library(sm); library(patchwork); library(mice); library(gridExtra); library(moments)
library(plm); library(stargazer); library(kohonen)

Dataset Management

# ----------------------------------------
# Dataset Management
# ----------------------------------------

# Read CSV file
energy_data <- read_csv("C:/Documents/merged_data2.csv",

col_types = cols(timestamp = col_character()))

# Convert timestamp column to POSIXct format for time-based operations
energy_data$timestamp_parsed <- ymd_hms(energy_data$timestamp, tz = "UTC")

# Get the minimum and maximum timestamps in the dataset
min_date <- min(energy_data$timestamp_parsed, na.rm = TRUE)
max_date <- max(energy_data$timestamp_parsed, na.rm = TRUE)

# Print the min and max timestamps
cat("Min date:", format(min_date, "%Y-%m-%d %H:%M:%S"),

"\nMax date:", format(max_date, "%Y-%m-%d %H:%M:%S"), "\n")

# Check data completeness per ID (each ID should cover the full date range)
complete_series <- energy_data %>%

group_by(ID) %>%
summarise(Start = min(timestamp_parsed),

End = max(timestamp_parsed)) %>%
filter(Start == min_date & End == max_date)

# Count the number of IDs with complete data
num_complete_series <- nrow(complete_series)
cat("Number of IDs with a complete series:", num_complete_series, "\n")

# Filter dataset to keep only complete series
energy_data <- energy_data %>%

filter(ID %in% complete_series$ID)
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# ----------------------------------------
# Variable Creation
# ----------------------------------------

# Aggregate hourly energy consumption
hourly_data <- energy_data %>%

mutate(hour = floor_date(timestamp_parsed, "hour")) %>%
group_by(ID, hour) %>%
summarize(hourly = sum(kwh, na.rm = TRUE), .groups = "drop")

# Compute hourly differences for each ID
data_diff <- hourly_data %>%

arrange(ID, hour) %>%
group_by(ID) %>%
mutate(diff = hourly - lag(hourly)) %>%
filter(!is.na(diff)) %>%
ungroup()

# Compute Z-score normalization for differences
data_z_norm <- data_diff %>%

group_by(ID) %>%
mutate(z_diff = (diff - mean(diff, na.rm = TRUE)) / sd(diff, na.rm = TRUE)) %>%
ungroup()

# Compute absolute Z-score
data_z_norm_abs <- data_diff %>%

group_by(ID) %>%
mutate(z_diff = abs(diff - mean(diff, na.rm = TRUE)) / sd(diff, na.rm = TRUE)) %>%
ungroup()

# ----------------------------------------
# Summary Statistics
# ----------------------------------------

#Reference in the Report: Table 1
summary_table <- energy_data %>%

summarize(
mean_kwh = mean(kwh, na.rm = TRUE),
sd_kwh = sd(kwh, na.rm = TRUE),
skewness_kwh = skewness(kwh, na.rm = TRUE),
median_kwh = quantile(kwh, 0.50, na.rm = TRUE),

)

# ----------------------------------------
# Scale Invariance
# ----------------------------------------

#Reference in the Report: Figure 1
hist(hourly_data$hourly,

main = "Hourly Consumption",
xlab = "kWh",
col = "lightblue",
breaks = 100,
xlim = c(0, 3),
freq = FALSE)

plot(log(hourly_data$hourly + abs(min(hourly_data$hourly)) + 1),
log(seq_along(hourly_data$hourly)),
main = "Log-Log Plot", xlab = "log(Consumption)", ylab = "log(Rank)",
col = "blue", pch = 16)

# ----------------------------------------
# Visualization
# ----------------------------------------

#Reference in the Report: Figure 2
ggplot(hourly_avg, aes(x = hour_only, y = mean_hourly)) +

geom_col(fill = "steelblue2") +
labs(x = "Hour of the Day", y = "Avg Consumption (kWh)") +
theme_minimal()

hourly_avg_z <- data_z_norm %>%
mutate(hour_only = format(hour, "%H")) %>%
group_by(hour_only) %>%
summarize(mean_hourly_zdiff = mean(z_diff, na.rm = TRUE))
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ggplot(hourly_avg_z, aes(x = hour_only, y = mean_hourly_zdiff)) +
geom_col(fill = "steelblue2") +
labs(x = "Hour of the Day", y = "Avg Z-Score") +
theme_minimal() +
theme_minimal()

Wavelet Analysis

# ---- APPLY DISCRETE WAVELET TRANSFORM (DWT) ----
# Compute wavelet coefficients for each individual
wavelet_list <- data_z_norm %>%

group_by(ID) %>%
group_split() %>%
lapply(function(df) {

# Determine the maximum allowed levels for DWT based on data length
max_levels <- min(10, floor(log2(nrow(df))))

# Apply Discrete Wavelet Transform (DWT) using Haar filter
dwt_res <- dwt(df$z_diff, filter = "haar", n.levels = max_levels)

# Store wavelet coefficients in a dataframe
data.frame(ID = df$ID[1], coeffs = unlist(dwt_res@W))

})

# Combine wavelet coefficient results into a dataframe
wavelet_df <- do.call(rbind, wavelet_list)
length(unique(wavelet_df$ID))

# ---- CONVERT WAVELET COEFFICIENTS INTO MATRIX ----
# Reshape wavelet coefficients for Self-Organizing Map (SOM) analysis
wavelet_df <- wavelet_df %>%

group_by(ID) %>%
mutate(variable = paste0("W", row_number())) %>%
ungroup()

# Create a matrix where rows represent IDs and columns represent wavelet coefficients
coeffs_matrix <- reshape2::acast(wavelet_df, ID ~ variable,

value.var = "coeffs")

rows_with_na <- which(apply(coeffs_matrix, 1, function(x) any(is.na(x))))
print(rows_with_na)

# Store original IDs
coeffs_matrix_clean <- coeffs_matrix[complete.cases(coeffs_matrix), ]
original_IDs <- rownames(coeffs_matrix_clean)

SOM

# ---- TRAIN SELF-ORGANIZING MAP (SOM) ----
# Create the SOM Grid
set.seed(123)
som_grid <- somgrid(xdim = 20, ydim=20, topo="hexagonal")
# Train the SOM
som_model <- som(coeffs_matrix_clean,

grid=som_grid,
rlen=500,
alpha=c(0.05,0.01),
keep.data = TRUE)

length(som_model$unit.classif)

# Extract SOM reference vectors (codebook)
som_codebook <- som_model$codes
som_codebook <- do.call(rbind, som_model$codes)

# Plot the SOM before clustering
#Reference in the Report: Figure 3
plot(som_model, type = "counts")
plot(som_model, type="changes")
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Silhouette Analysis

# ---- DETERMINE OPTIMAL NUMBER OF CLUSTERS (ELBOW METHOD) ----

# Compute within-cluster sum of squares (WSS) for different k values (1 to 10)
wss_values <- sapply(1:10, function(k) {

kmeans(som_codebook, centers = k, nstart = 50)$tot.withinss
})

# Plot the elbow curve to visualize the optimal number of clusters (k)
#Reference in the Report: Figure 4
wss <- plot(1:10, wss_values, type = "b", pch = 19, frame = FALSE,

xlab = "Number of Clusters (k)",
ylab = "Total Within-Cluster Sum of Squares",
main = "Elbow Method for Optimal K")

# Add x-axis labels for clarity
axis(1, at = 1:10, labels = 1:10)

# ---- SILHOUETTE METHOD FOR OPTIMAL K ----

# Compute silhouette scores for k values from 2 to 10
silhouette_scores <- sapply(2:10, function(k) {

km <- kmeans(som_codebook, centers = k, nstart = 50) # Perform k-means clustering
sil <- silhouette(km$cluster, dist(som_codebook)) # Compute silhouette scores

if (is.matrix(sil)) {
return(mean(sil[, 3])) # Return the mean silhouette score if valid

} else {
return(NA) # Return NA if silhouette score computation fails

}
})

# Plot silhouette scores for different k values
#Reference in the Report: Figure 5
scores <- plot(2:10, silhouette_scores, type = "b", pch = 20,

xlim = c(2, 10), ylim = c(0, 0.3), xaxt = "n")
# Add x-axis labels for clarity
axis(1, at = 1:10, labels = 1:10)

k-means Clustering

# ---- APPLY K-MEANS CLUSTERING TO SOM CODEBOOK ----
# Define the number of clusters
k_optimal <- 4

# Perform k-means clustering on the SOM codebook
kmeans_result <- kmeans(som_codebook, centers = k_optimal, nstart = 50)

# Get the Best Matching Unit (BMU) index for each data point
bmu_index <- som_model$unit.classif

# Create a mapping between ID and BMU
id_som_mapping <- data.frame(ID = original_IDs, BMU = bmu_index)

# Create a dataframe for SOM neuron clusters
neuron_clusters <- data.frame(BMU = 1:nrow(som_codebook),

cluster = kmeans_result$cluster)

# Merge ID-BMU mapping with cluster assignments
id_cluster_mapping <- merge(id_som_mapping, neuron_clusters, by = "BMU")

# Merge cluster assignments with the original data
data_with_clusters <- merge(hourly_data_clean, id_cluster_mapping, by = "ID")
datadiff_with_clusters <- merge(data_z_norm, id_cluster_mapping, by = "ID")

# Plot SOM with cluster assignments
#Reference in the Report: Figure 5
plot(som_model, type = "mapping", main = "SOM Clusters",

bgcol = cluster_colors[kmeans_result$cluster], pch = NA)
add.cluster.boundaries(som_model, kmeans_result$cluster, col = "yellow")

plot(som_model, type = "dist.neighbours", main = "U-Matrix")
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add.cluster.boundaries(som_model, kmeans_result$cluster)

Re-clustering

# ----------------------------------------
# First Iteration
# ----------------------------------------

cluster_2_ids <- id_cluster_mapping$ID[id_cluster_mapping$cluster == 2]
coeffs_matrix_cluster2 <- coeffs_matrix_clean[rownames(coeffs_matrix_clean)

%in% cluster_2_ids, ]

set.seed(124)
som_grid_cluster2 <- somgrid(xdim = 10, ydim = 10, topo = "hexagonal")

som_model_cluster2 <- som(coeffs_matrix_cluster2,
grid = som_grid_cluster2,
rlen = 500,
alpha = c(0.05, 0.01),
keep.data = TRUE)

som_codebook_cluster2 <- do.call(rbind, som_model_cluster2$codes)

# Determines the optimal number of clusters
silhouette_scores2 <- sapply(1:10, function(k) {

km <- kmeans(som_codebook_cluster2, centers = k, nstart = 50)
sil <- silhouette(km$cluster, dist(som_codebook_cluster2))

if (is.matrix(sil)) {
return(mean(sil[, 3]))

} else {
return(NA)

}
})
scores2 <- plot(1:10, silhouette_scores2,
type = "b", pch = 20, xlim = c(1, 10),
ylim = c(0, 0.7), xaxt = "n")
axis(1, at = 1:10, labels = 1:10)
mean(silhouette_scores2, na.rm = TRUE)

# K-means
k_optimal_cluster2 <- 3
kmeans_result_cluster2 <- kmeans(som_codebook_cluster2,
centers = k_optimal_cluster2, nstart = 100)

cluster_color2 <- c("red", "pink", "yellow")

# New clusters to IDs
bmu_index_cluster2 <- som_model_cluster2$unit.classif

id_som_mapping_cluster2 <- data.frame(ID = rownames
(coeffs_matrix_cluster2), BMU = bmu_index_cluster2)

neuron_clusters_cluster2 <- data.frame(BMU = 1:nrow
(som_codebook_cluster2), cluster = kmeans_result_cluster2$cluster)

id_cluster_mapping_cluster2 <- merge
(id_som_mapping_cluster2, neuron_clusters_cluster2, by = "BMU")

# Merge with dataset
datadiff_with_clusters_cluster2 <- merge
(hourly_data_clean, id_cluster_mapping_cluster2, by = "ID")

# ----------------------------------------
# Second Iteration
# ----------------------------------------

cluster_2_ids_new <- id_cluster_mapping_cluster2$ID
[id_cluster_mapping_cluster2$cluster == 1]

coeffs_matrix_cluster2_new <- coeffs_matrix_cluster2
[rownames(coeffs_matrix_cluster2) %in% cluster_2_ids_new, ]
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set.seed(1245)
som_grid_cluster2_new <- somgrid(xdim = 10, ydim = 10, topo = "hexagonal")

som_model_cluster2_new <- som(coeffs_matrix_cluster2_new,
grid = som_grid_cluster2_new,
rlen = 500,
alpha = c(0.05, 0.01),
keep.data = TRUE)

som_codebook_cluster2_new <- do.call(rbind, som_model_cluster2_new$codes)

# Determines the optimal number of clusters
silhouette_scores_new <- sapply(1:10, function(k) {

km <- kmeans(som_codebook_cluster2_new, centers = k, nstart = 50)
sil <- silhouette(km$cluster, dist(som_codebook_cluster2_new))

if (is.matrix(sil)) {
return(mean(sil[, 3]))

} else {
return(NA)

}
})

# k-means
k_optimal_cluster2_new <- 2
kmeans_result_cluster2_new <- kmeans(som_codebook_cluster2_new,
centers = k_optimal_cluster2_new, nstart = 100)

cluster_color2_new <- c("red", "pink")

# Plot SOM
#Reference in the Report: Figure 11
plot(som_model_cluster2_new, type = "mapping", main = "SOM Clusters",

bgcol = cluster_color2_new
[kmeans_result_cluster2_new$cluster], pch = NA)

add.cluster.boundaries(som_model_cluster2_new,
kmeans_result_cluster2_new$cluster, col = "white")

# New clusters to IDs
bmu_index_cluster2_new <- som_model_cluster2_new$unit.classif

id_som_mapping_cluster2_new <- data.frame(ID = rownames
(coeffs_matrix_cluster2_new), BMU = bmu_index_cluster2_new)

neuron_clusters_cluster2_new <- data.frame(BMU = 1:nrow
(som_codebook_cluster2_new), cluster = kmeans_result_cluster2_new$cluster)

id_cluster_mapping_cluster2_new <- merge(id_som_mapping_cluster2_new,
neuron_clusters_cluster2_new, by = "BMU")

## Adjusted Rand Index and INERTIA ##
diff_sse <- abs(kmeans_result$tot.withinss - kmeans_result_cluster2$tot.withinss)
print(diff_sse)

diff_sse2 <- abs(kmeans_result_cluster2$tot.withinss - kmeans_result_cluster2_new$tot.withinss)
print(diff_sse2)

Z-score Analysis

# ----------------------------------------
# Analysis on Z-Score
# ----------------------------------------

# Compute the average Z-score per cluster and hour
cluster_hourly_mean <- datadiff_with_clusters %>%

group_by(cluster, hour) %>%
summarise(mean_diff = mean(z_diff, na.rm = TRUE), .groups = "drop")

# Save a plot of average hourly z-score by cluster
#Reference in the Report: Figure 7
ggplot(cluster_hourly_zmean, aes(x = hour, y = mean_diff, color = factor(cluster))) +

geom_line(size = 1) +
labs(title = "",
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x = "Hour",
y = "Z-score",
color = "Cluster") +

theme_minimal() +
scale_color_manual(values = cluster_colors) +
scale_x_datetime(date_labels = "%b")+
facet_wrap(~ cluster, scales = "free_x")+
theme(strip.text = element_blank())

dev.off()

# Save a plot of average hourly z-score abs by cluster
#Reference in the Report: Figure 12
png("Average_ZABS_by_Cluster.png", width = 3000, height = 1500, res = 300)
ggplot(cluster_hourly_zmean, aes(x = hour, y = mean_diff_abs, color = factor(cluster))) +

geom_line(size = 1) +
labs(title = "",

x = "Hour",
y = "Z-score Abs",
color = "Cluster") +

theme_minimal() +
scale_color_manual(values = cluster_colors) +
scale_x_datetime(date_labels = "%b")+
facet_wrap(~ cluster, scales = "free_x")+
theme(strip.text = element_blank())

dev.off()

Level Analysis

cluster_hourly_mean <- data_with_clusters %>%
group_by(cluster, hour) %>%
summarise(mean_avg = mean(hourly, na.rm = TRUE), .groups = "drop")

# Add time components for seasonal analysis
cluster_hourly_mean <- cluster_hourly_mean %>%

mutate(hour = hour(hour),
week = week(hour),
year = year(hour),
month = month(hour),
weekday = wday(hour),
weekday_name = weekdays(hour))

# Select specific weeks to represent different seasons
filter_data_by_week <- cluster_hourly_mean %>%

filter(((week == 3) | # Winter
(week == 15) | # Spring
(week == 27) | # Summer
(week == 40))) # Autumn

# Save a seasonal volatility analysis plot
#Reference in the Report: Figure 8
ggplot(filtered_data, aes(x = hour, y = mean_avg, color = factor(cluster))) +

geom_line(size = 1) +
facet_wrap(~ week + cluster, scales = "free_x") +
scale_color_manual(values = cluster_colors) +
scale_x_datetime(

name = "Day",
date_breaks = "1 day",
date_labels = "%d/%m"

) +
labs(

y = "Average Hourly Consumption",
color = "Cluster"

) +
theme_minimal() +
theme(strip.text.x = element_blank(),

axis.text.x = element_text(angle = 90, hjust = 1))

# Extract data for each season on a specific weekday (Thursday)
winter_data <- filter(cluster_hourly_mean, week == 3 & weekday == 5)
spring_data <- filter(cluster_hourly_mean, week == 15 & weekday == 5)
summer_data <- filter(cluster_hourly_mean, week == 27 & weekday == 5)
autumn_data <- filter(cluster_hourly_mean, week == 40 & weekday == 5)
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# Function to create seasonal plots
#Reference in the Report: Figure 9
create_season_plot <- function(data, season) {

ggplot(data, aes(x = hour, y = mean_diff, color = factor(cluster), group = cluster)) +
geom_line(size = 1) +
geom_point(size = 2) +
scale_x_continuous(breaks = seq(0, 23, by = 1)) +
scale_color_manual(values = cluster_colors) +
labs(title = paste(season, "(Week", unique(data$week), ", Thursday)"),

x = "Hour",
y = "Z-score Average",
color = "Cluster") +

theme_minimal() +
facet_wrap(~ cluster, scales = "free_x")

}

# Create and save seasonal plots
winter_plot <- create_season_plot(winter_data, "Winter")
spring_plot <- create_season_plot(spring_data, "Spring")
summer_plot <- create_season_plot(summer_data, "Summer")
autumn_plot <- create_season_plot(autumn_data, "Autumn")

Centroid Analysis

# Total number of variables
total_vars <- 8760

# Levels and corresponding group sizes
divisors <- 2^(1:10)
group_sizes <- floor(total_vars / divisors)

# Initialize the category vector as "Others"
var_category <- rep("Others", total_vars)

# Assign categories using numerical limits as names
start_idx <- 1
for (j in seq_along(group_sizes)) {

end_idx <- min(start_idx + group_sizes[j] - 1, total_vars)

# Add leading zero for levels 1-9
level_label <- sprintf("Level%02d", j) # Creates "Level01", "Level02", ..., "Level10"

var_category[start_idx:end_idx] <- level_label
start_idx <- end_idx + 1

}

# Assign variable names
names(var_category) <- colnames(coeffs_matrix_clean)

# Create a dataframe to store category counts
category_counts <- data.frame()

# Set cluster IDs to use
cluster_names <- c(1, 3, 4)

for (i in seq_along(cluster_names)) {
cluster_id <- cluster_names[i] # Use correct cluster ID

# Get top N variable names for the current cluster
top_vars_i <- colnames(diff_squared)[order(diff_squared[i, ], decreasing = TRUE)[1:n_top]]

# Remove NAs
top_vars_i <- top_vars_i[!is.na(top_vars_i)]

# Count how many variables of each category are in the top N
category_dist <- table(var_category[top_vars_i])

# Add counts to the dataframe
for (cat in names(category_dist)) {

category_counts <- rbind(category_counts, data.frame(
Cluster = paste0("Cluster", cluster_id),
Category = cat,
Count = as.numeric(category_dist[cat])
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))
}

}

# Ensure all categories are present
all_cats <- c(paste0("Level", sprintf("%02d", 1:10)), "Others")

# Debug print
print(all_cats) # Check that "Level01", ..., "Level10" are present
print(unique(category_counts$Category)) # Check present categories

# Fill in missing category-cluster combinations with zero counts
for (cat in all_cats) {

if (!(cat %in% category_counts$Category[category_counts$Cluster == paste0("Cluster", cluster_id)])) {
category_counts <- rbind(category_counts, data.frame(

Cluster = paste0("Cluster", cluster_id),
Category = cat,
Count = 0

))
}

}

# View first few rows of final result
print(head(category_counts))

# Prepare a long-format dataframe containing squared differences for all clusters
long_diff_df <- data.frame()

cluster_ids <- c(1, 3, 4)
cluster_labels <- paste0("Cluster", cluster_ids)

for (i in seq_along(cluster_ids)) {
cluster_index <- i # index in diff_squared matrix
cluster_name <- cluster_labels[i]

temp_df <- data.frame(
Variable = colnames(diff_squared),
DiffValue = diff_squared[cluster_index, ],
Level = var_category[colnames(diff_squared)],
Cluster = cluster_name

)

long_diff_df <- rbind(long_diff_df, temp_df)
}

# Ensure the Level column is treated as an ordered factor
long_diff_df$Level <- factor(long_diff_df$Level, levels = paste0("Level", sprintf("%02d", 1:10)))

# Optionally remove "Others" and NA levels
long_diff_df <- long_diff_df[!is.na(long_diff_df$Level) & long_diff_df$Level != "Others", ]

#Reference in the Report: Figure 10
ggplot(long_diff_df, aes(x = Level, y = DiffValue, fill = Level)) +

geom_boxplot(alpha = 0.6) +
geom_jitter(color = "black", size = 0.4, alpha = 0.7, width = 0.2) +
scale_fill_viridis_d() +
facet_wrap(~ Cluster, ncol = 1) +
theme_minimal() +
labs(

title = "",
x = "Level",
y = "Squared Difference"

) +
theme(

legend.position = "none",
strip.text = element_text(size = 12, face = "bold"),
plot.title = element_text(size = 14, face = "bold")

)

Multinomial (STATA)

**************************************************
* Summary Statistics
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**************************************************
summarize customerid
summarize typeofhousehold
summarize numberofoccupants
describe numberofoccupants typeofhousehold
summarize numberofoccupants

**************************************************
* Tabulations
**************************************************
tabulate typeofhousehold
tabulate typeofhousehold numberofoccupants
tabstat numberofoccupants, by(typeofhousehold) stat(sum)
tabstat numberofoccupants, by(typeofhousehold) stat(mean)

**************************************************
* Create Occupants Dummy Variable
**************************************************
gen occupants_dummy = .
replace occupants_dummy = 1 if numberofoccupants == 1
replace occupants_dummy = 2 if numberofoccupants == 2
replace occupants_dummy = 3 if numberofoccupants == 3
replace occupants_dummy = 4 if numberofoccupants == 4
replace occupants_dummy = 5 if numberofoccupants > 5

**************************************************
* Heating Type Analysis
**************************************************
tabulate typeofhousehold typeofheating
contract typeofhousehold typeofheating
tabulate typeofheating
tabulate typeofheating, sort

**************************************************
* Encode Categorical Variables
**************************************************
encode typeofheating, generate(heating)
encode typeofhousehold, generate(household)
encode waterheatingmethod, generate(waterheating)
encode propertyownershipstatus, generate(status)

**************************************************
* Label Categorical Variables
**************************************************
label list
label values heating
tabulate household heating
label values waterheating
tabulate household waterheating
label define status_label 1 "Owner" 2 "Renter"
label values status status_label

tabulate propertyownershipstatus_id typeofhousehold, column
tabulate heating_id household_id, row
tabulate heating_id household_id, column
tabulate waterheating_id household_id, column

**************************************************
* Year of Construction and Building Age
**************************************************
tabulate yearofconstructionofthebuilding, sort

* Clean and convert year
list year if real(year) == .
replace year = "" if year == "NULL"
list year if real(year) == .
destring year, replace

* Generate building age
gen building_age = 2025 - year

* Categorize building age
gen age_dummy = .
replace age_dummy = 1 if building_age < 30
replace age_dummy = 2 if building_age >= 30 & building_age < 40
replace age_dummy = 3 if building_age >= 40 & building_age < 50
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replace age_dummy = 4 if building_age >= 50 & building_age < 60
replace age_dummy = 5 if building_age >= 60

label define age_dummy_label ///
1 "Less than 30" ///
2 "30-39" ///
3 "40-49" ///
4 "50-59" ///
5 "60+"

label values age_dummy age_dummy_label

**************************************************
* Electricity Product
**************************************************
encode selectedelectricityproduct, gen(product)
list selectedelectricityproduct product
tabulate product_id typeofhousehold, column

**************************************************
* Product Categories (Drop low obs)
**************************************************
bysort product: gen obs_count = _N
drop if obs_count < 100
drop obs_count

gen prod_1 = (str_product == "5")
label variable prod_1 "Energy Product 1"

gen prod_2 = (str_product == "9")
label variable prod_2 "Energy Product 2"

**************************************************
* Heating Grouping
**************************************************
gen heat_group = .
replace heat_group = 1 if inlist
(typeofheating, "heat pump", "heatpumpground",
"heatpumpgroundseparatemeter", "heatpumpseparatemeter")
replace heat_group = 2 if inlist
(typeofheating, "electric", "electricstorage")
replace heat_group = 3 if inlist
(typeofheating, "other", "central heating", "district heating",
"pellets", "woodblocks", "oil", "gas")

label define heat_lbl 1 "Heat pump" 2 "Electric" 3 "Other"
label values heat_group heat_lbl

**************************************************
* Water Heating Grouping
**************************************************
gen waterheat_group = .
replace waterheat_group = 1 if inlist(waterheatingmethod, "heat
pump", "heatpumpground", "heatpumpgroundseparatemeter",
"heatpumpseparatemeter")
replace waterheat_group = 2 if inlist(waterheatingmethod,
"electric")
replace waterheat_group = 3 if inlist(waterheatingmethod, "other",
"central heating", "district heating", "pellets", "woodblocks",
"solar", "solarvacuumtubecollector", "oil", "gas")

label define waterheat_lbl 1 "Heat Pump" 2 "Electric" 3 "Other"
label values waterheat_group waterheat_lbl

**************************************************
* Multinomial Logit Model
**************************************************
#Reference in the Report: Table 4

fvset base 3 heat_group
fvset base 3 waterheat_group

mlogit cluster prod_1 i.heat_group i.waterheat_group
numberofoccupants i.status i.household young, robust
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Regressions

# Note
# merged_data combines the clustering variables from R with the
# metadata (socio-demographic variables) analyzed on STATA.

#Reference in the Report: Table 7
==============================
# Hourly dependent variable
==============================
merged_data <- data_with_clusters %>%

left_join(metadata, by = c("ID" = "id")) %>%
filter(week %in% c(3, 15, 27, 40))

week_labels <- as.character(unique(merged_data$week))
column_labels <- c("General 1", "General 2",

paste0("Simple ", week_labels),
paste0("Complex ", week_labels))

merged_data$week <- as.factor(merged_data$week)
merged_data$cluster <- as.factor(merged_data$cluster)
merged_data$status <- as.factor(merged_data$status)
merged_data$household <- as.factor(merged_data$household)
merged_data$heat_group <- as.factor(merged_data$heat_group)
merged_data$waterheat_group <- as.factor(merged_data$waterheat_group)

merged_data$cluster <- relevel(as.factor(merged_data$cluster), ref = "2")

#With control variables
mod_general1 <- plm(

hourly ~ cluster + week + numberofoccupants +
Netz400F + heat_group + waterheat_group +
status + household + young,

data = merged_data,
index = c("ID", "hour"),
model = "random",
random.method = "walhus"

)

# Fit weekly models (same as general1 but estimated separately by week)
mods1 <- list()
column_labels <- c("General")

mods1[[1]] <- mod_general1

weeks_to_include <- c(3, 15, 27, 40)
i <- 2

for (w in weeks_to_include) {
data_week <- subset(merged_data, week == w)

mod_week <- plm(
hourly ~ cluster + numberofoccupants +

Netz400F + heat_group + waterheat_group +
status + household + young,

data = data_week,
index = c("ID", "hour"),
model = "random",
random.method = "walhus"

)

mods1[[i]] <- mod_week
column_labels[i] <- paste0("Week ", w)
i <- i + 1

}

#Without control variables
# --- GENERAL MODEL 1: Hourly (without z_diff_abs) ---
mod_generalNO <- plm(

hourly ~ cluster + week,
data = merged_data,
index = c("ID", "hour"),
model = "random",
random.method = "walhus"

)
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# Fit weekly models (same as general1 but estimated separately by week)
modsNO <- list()
column_labels <- c("General")

# Aggiungi modello generale
modsNO[[1]] <- mod_generalNO

# Aggiungi modelli settimanali
i <- 2
for (w in c(3, 15, 27, 40)) {

data_week <- subset(merged_data, week == w)

mod_week <- plm(
hourly ~ cluster,
data = data_week,
index = c("ID", "hour"),
model = "random",
random.method = "walhus"

)

modsNO[[i]] <- mod_week
column_labels[i] <- paste0("Week ", w)
i <- i + 1

}
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