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Executive Summary 
 
Climate change increases physical climate uncertainty—the challenge of 
characterizing variations in Earth's climate system. This uncertainty has significant 
economic and policy implications, particularly at the local level. Granular measures 
are essential for two reasons: (1) they improve estimates of uncertainty’s economic 
impact, aiding resource allocation for climate mitigation, and (2) they identify 
localized risks, guiding adaptation efforts where needed most. 
This policy brief presents “Local Physical Climate Uncertainty” (Cavaliere, et al., 2025), 
which constructs local uncertainty indexes using temperature data from 44 grid 
points across Italy. While focused on monthly temperature fluctuations, the 
methodology can be extended to other climate variables, such as rainfall, and 
applied at finer spatial resolutions (e.g., individual weather stations). 
Findings show a marked increase in temperature uncertainty since the 1980s, 
particularly in coastal regions. A key application of these measures is estimating 
uncertainty’s effect on regional GDPs, highlighting its role in economic decision-
making and climate adaptation policies. 
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Physical Climate Uncertainty 
 
Uncertainty refers to the dispersion of a random quantity that is being predicted. In 
everyday life, it can severely affect the ability to plan and the psychological well-
being. Rising climate uncertainty affects the ability to manage weather fluctuations, 
respond to extreme events, as well as plan and implement necessary policies, with 
broad social implications. Being a key determinant of economic choices and 
collective welfare, uncertainty in climate plays a central role in public debates. 
Therefore, measuring it is essential to study its dynamics and to assess its effects. 
Uncertainty can arise from different sources (Cai, 2021): this paper focuses on 
modelling and measuring the uncertainty stemming from temperatures dynamics. 
Building on the influential work of (Jurado, et al., 2015), uncertainty measurement 
involves making dynamic forecasts of the variable(s) of interest and then predicting 
the dispersion of values from those forecasts—known as 'conditional volatility'. 
Following the influential work of, measuring uncertainty essentially consists of 
forming dynamic forecasts of the variable(s) of interest and then form dynamic 
predictions of values’ dispersion from such forecasts, the so-called “conditional 
volatility”. This work studies temperatures, which, as all variables of the climate 
system, is distributed differently across different locations. Building a set of 
disaggregated measures of climate, instead of building a synthetic index, is crucial 
in providing more accurate estimates of climate change impact on the economic 
system (Bilal & Känzig, 2024) and, obviously, more precise indications to citizens and 
policymakers about what is going to happen.  
 
Step one: forming temperatures’ forecasts 
 
The first challenge is the large number of time series to forecast – 44 observational 
units. Indeed, a standard Vector Auto-Regressive (VAR) model would imply the 
estimation of a great number of parameters compared to the number of 
observations, leading to noisy estimates. A solution to this is represented by the 
Dynamic Factor Models (DFMs), where the auto-regressive structure is estimated on 
a reduced number of factors that well summarize the original data only. Notice that 
DFMs conceptually imply 2 steps in the estimation: the formation of the factors and 
the estimation of the autoregressive parameters. Since joint estimation methods 
exist, they will be used here. The results in terms of forecasting power are indeed 
different, with the 2-step procedure producing R2 of the individual series always 
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above 0.9, while the 1-step procedure go as low as 0.55. Nonetheless, the uncertainty 
measurements will not be affected by this, as shown later.  
It is also important to note that “climate” refers to a distribution of variables. This 
means that “climate change” implies some form of non-stationarity in the variables 
describing it. This poses a second challenge to traditional statistical methods to use 
for the first step forecasts, which usually rely on the assumption of stationarity. More 
specifically, evidence of global warming points towards, at least, a shift in the central 
tendency of temperatures’ distribution. For this reason, in this work, temperatures 
time series are decomposed into a “trend” component and a “cycle” component. In 
this way, the cyclic component is mean-stationary by construction and the trend 
component mirrors the non-stationary part more clearly, improving the efficacy of 
more sophisticated techniques that can be applied to non-stationary variables. 
Moreover, the system autoregressive behaviour might be different at different time 
scales, so performing separated estimations has the potential to provide more 
accurate predictions. Whether global warming should be represented by a 
deterministic or stochastic trend has been the subject of debate, with more recent 
evidence pointing towards a better fit of the stochastic one (Chang, et al., 2020). For 
completeness, this work considers both deterministic trends and stochastic ones, 
represented as 12-year moving averages. The deterministic trend is modelled as a 
contiguous segment, a linear trend shifting to an exponential, with break date and 
functional form chosen optimally with standard criteria. The moving average length 
is chosen considering that climatic cycles with periods higher or lower than 12 years 
form two well separated clusters. High-frequency fluctuations include the seasonal 
cycle, which is exactly one year long, the “El Niño-Southern Oscillation,” which lasts 
between 2 and 7 years, and solar cycles, which range from 10 to 12 years, while those 
with a lower frequency all span more than two decades (such as the “Pacific 
Decadal Oscillation”, between 20 and 30 years, and the “Atlantic Multidecadal 
Oscillation”, longer than 60 years). This is also in line with the fact that the trend 
component is called to capture potential unit roots, which in a 140 year long sample 
are difficult to distinguish from a stationary process with a cycle longer than 12 years 
anyway. 
In the end, all the cyclical components prove to be stationary by standard tests, and 
all stochastic trends show unit-root-like behavior. The number of factors can be 
chosen by several optimality rules. In this work it is followed (Alessi, et al., 2010), which 
suggests the use of 4 factors for both the set of cycle series and the stochastic-
trend ones. For the stochastic-trend series, a I(1) Vector Error Correction Model 
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(VECM) in the style of (Barigozzi, et al., 2021) is estimated, relying on a sole 
cointegration relationship. 
 
Step two: forming conditional expectations of forecasting errors volatility 
 
Once predictions are formed, the aim of the second step is producing predictions 
of the forecasting errors volatility. As common in the literature, to enforce the non-
negativity requirement of volatility in the prediction model, it is the natural logarithm 
of the squared forecasting errors to be fitted. These series qualitatively present more 
regular dynamic behaviors and are associated to a greater probability of being 
generated by a normal distribution, which helps in the following estimations.  
First, we examine the stationarity of these series. For cycle-series, evidence suggests 
no unit roots but indicates structural breaks, possibly involving mean shifts and 
trend changes. Standard information criterion are not decisive in choosing a 
uniform modelling strategy. A uniform modelling assuming a break in the constant 
only is preferred after a visual inspection of the average value of volatility across 
locations, in Figure 1. This echoes the observation of homogenous  

 

Figure 1. Cross-sectional average of cycle-temperature volatility. Upper charts refer to forecasting 
errors of series de-trended deterministically, lower ones stochastically. Charts on the left refer to 
forecasting errors obtained using a 1-step methodology, while on the right are from the use of a 2-
step method. 
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signs in the constant shifts, as opposed to heterogenous signs in the time trend 
slope changes, which would suggest an usual non-monotonous relation between 
climate change and temperatures uncertainty. For the stochastic-trend series 
volatility, models with changes in the time trend dominate those with a break in the 
constant only, so the former are employed. It should be noted that these structural 
break directly speak to the conditional expectations of the series’ volatility, so they 
constitute a first element of the uncertainty measures. 
The second element is the part of volatility that can be forecasted with time series 
methods. These can be applied on the de-meaned and de-trended volatilities, as 
they are now stationary. For the cyclical series and the stochastic-trends the 
optimal number of factors would be one, with only 15% of total variance explained. 
Therefore, a univariate approach is followed, by fitting S-ARMA models, chosen 
relying on the Akaike Information Criterion, for each of the individual volatility series. 
Combining volatility expectations from deterministic and autoregressive models, 
uncertainty series for all geographical units can be obtained. 
 

 

Figure 2. Cross-sectional average of temperature uncertainty. Green and red lines refer to the 
“cyclical” components of temperatures and take the values reported on the left-hand-side y-axis. 
The blue line refers to the “trend” component (the stochastic only) and takes the values reported 
on the right-hand-side y-axis. 

The average of these is plotted in Figure 2. It can be observed a huge increase in 
the uncertainty of cyclical fluctuations of temperatures after the 1980s, which is 
around the same time as the average temperature started raising exponentially. 
Less stark results are visible from the stochastic-trends uncertainty average series, 
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although the dynamic post-1980 also looks significantly different from that of 
previous decades. While in the averages of cycle uncertainty there is only one 
structural break in the mean around the 1980s being statistically significant, while in 
the stochastic-trend one there are two: at the beginning of the XX century and at 
the end of it. The bulk of uncertainty dynamics, anyway, comes from the cyclical 
part. 
The main focus of this work, however, is the local estimates. As cyclical uncertainty 
is more relevant by orders of magnitude, those are also the series discussed here. 
Figure 3 shows the increase in the uncertainty in the different locations used for this 
analysis. It can be observed that the Adriatic coastal regions, together with Aosta 

Valley and Friuli-Venezia Giulia are the areas most impacted.  

 

Figure 3. Increases in the conditional means of local volatilities – “cycle” components only. Dots 
crossed by a white 'X' are not statistically different from zero at the 5% confidence level.  
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Policy Options and Analysis 
 
Option 1: Push for climate mitigation 

• Analysis: The overall climate uncertainty in Italy has increased.  
• Policy Implications: Making plans will be more and more difficult, possibly 

hindering investments, which can be especially harming for a transition to a 
green economy.  

 
Option 2: local climate adaptation 

• Analysis: Some Italian regions are more exposed to increases in uncertainty 
than others. 

• Policy Implications: there are non-trivial choices to make in terms of 
allocation of resources employed for local climate adaptation.  

 
 

Recommendations 
 

1. Do not focus on expected changes only: 
o Predicting climatic conditions is becoming more difficult. Raising 

awareness of the need to change the decision-making paradigm 
could be a cost-effective measure. 

o When estimates of costs associated to climate are considered, place 
special care into whether uncertainty costs are considered. 

 
2. Allocate resources to directly address the issue: 

o The overall extent of increase in climate uncertainty in Italy is 
dependent on the magnitude of global climate change. Therefore, the 
first course of action possible is to devote resources to limit it. 

o Climate adaptation measures are mostly local. Resource allocation 
decisions should begin as soon as possible. Whether more resources 
should be devoted to regions with higher uncertainty or more rapidly 
increasing uncertainty is a highly political choice, but it should rely on 
further analysis exploiting similar local indexes of uncertainty to assess 
its economic impact. 

 

 



      

 

Policy Brief  
Local Physical Climate Uncertainty   9 
 

Implementation Considerations 
 

I. Extension potential:  
o The statistical methodology is relatively simple and can be applied 

to much different geographical and temporal scales, as well as to 
different climatic variable. 

o The application of these indexes in a study of the economic impact 
is straightforward. 

II. Limited methodology sophistication:  
o The simplicity of the statistical model applied has clear advantages, 

but more sophisticated methods to form expectations of 
temperatures could be employed. 

 
 

Conclusion 
 
This policy brief underscores the growing challenge of local physical climate 
uncertainty in Italy. More specifically, our findings highlight significant regional 
disparities in temperature uncertainty increases, with more notable increases in 
coastal areas. By leveraging granular uncertainty measures, policymakers can 
better assess the economic impact of climate variability and allocate resources for 
targeted adaptation strategies. 
 
To enhance resilience against rising climate uncertainty, Italy should integrate 
uncertainty considerations into climate policy, refine local adaptation plans, and 
invest in predictive models. Regular policy evaluations and a proactive approach to 
uncertainty mitigation will ensure adaptive capacity in the face of ongoing climate 
change.  
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