
 

 

 

 

SPOKE 4 - D4.2.1 – Definition of risk measures of 
digital finance and credit ratings of SMEs and new 
green/young enterprises based on artificial 
intelligence 
A Rank Graduation Box for SAFE AI 

December 2024

GRINS – Growing Resilient, INclusive and Sustainable 
“9. Economic and financial sustainability of systems and territories” 

Codice Identificativo: PE00000018 
Finanziato nell’ambito del Piano Nazionale di Ripresa e Resilienza PNRR 

Missione 4 – Componente 2 
Investimento 1.3 – Creazione di “Partenariati estesi alle università, ai 

centri di ricerca, alle aziende per il finanziamento di progetti di ricerca di base” 



 

2 

 

Document data 

Title Spoke 4  
BAC SUST-AI: Sustainable Artificial Intelligence in 
Finance 
Contribution to deliverable 
D4.2.1 Definition of risk measures of digital finance 
and credit ratings of SMEs and new green/young 
enterprises based on artificial intelligence 
A Rank Graduation Box for SAFE AI 

Owner Università di Pavia 

Contributors Arianna Agosto 
Paola Cerchiello 
Paolo Giudici 

Document version Final 

Last version date 31/12/2024 

 

 

Executive summary 
 

Machine Learning (ML) methods are boosting the applications of Artificial Intelligence (AI) in all human 

activities. Differently from ordinary computer software and applications, AI not only converts inputs 

into outputs, but can also change the surrounding environment, with the risk of creating harm for 

individuals, organizations and the environment.  

 

This is the reason why authorities, regulators and standard bodies around the world have begun to 

monitor the risks arising from the adoption of AI methods. For example, the European Union has 

introduced the Artificial Intelligence Act (AI Act), which puts forward a number of key compliance 

requirements to AI in terms of sustainability, accuracy, fairness and explainability, compulsory for high 

risk applications. The United States Department of Commerce has introduced an AI risk management 

framework, based on a similar set of compliance requirements, to be voluntarily adopted by 

organizations that employ AI applications. 
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The above developments require, to be practically implemented, the availability of a set of statistical 

metrics that can actually measure whether AI applications are compliant, as well as the risk of not 

being compliant. 

 

A consistent set of metrics for AI compliance and risk management does not exist yet. To fill the gap, 

Giudici and Raffinetti (2023, Finance Research Letters) introduced a model for the evaluation of the 

compliance of the AI applications in finance to the European AI Act.  

According to the Authors' perspective, such compliance can be translated into four "S.A.F.E." key 

principles: ``S'' for sustainability; ``A'' for accuracy; ``F'' for fairness; ``E'' for explainability. Their 

approach is based on the employment of Shapley-Lorenz values, a normalized variant of the well 

known Shapley values which inherits from the latter its computational complexity. 

 

In this deliverable1, the previous approach is extended in three main ways: a) we develop a model valid 

for all applications of AI, and not only for those in finance; b) we provide a model that is less 

computational intensive, and easier to interpret; c) we develop a model that is scalable, and 

generalizable to all AI compliance requirements. 

 

In more detail, with reference to a) the paper considers different cases and a simulation study; with 

reference to b) we introduce metrics that are interrelated by means of a common mathematical root: 

the Lorenz curve, which is related to the Receiver Operating Characteristic curve. This allows the 

integration of all measures into an agnostic score that can be employed to assess the trustworthiness 

of any AI application. With reference to c), we develop a model that is based on ranks, and that it 

appears as a ``box'', as it can be enriched by new metrics as new compliance requirements emerge, in 

particular for generative AI, whose risks are still under investigation. For these reasons, we call our 

approach a ``Rank Graduation Box'' (RGB). 

 

The deliverable is organized as follows: a methodology section introduces the theoretical framework  

of our proposal, and  the description of the proposed RGB metrics; an application section presents 

some experimental scenarios, to assess the validity of the proposal; a conclusion section concludes the 

paper with some final remarks and comments. 

 

 
1 Golnoosh Babaei, Paolo Giudici, Emanuela Raffinetti (2025), A Rank Graduation Box for SAFE AI, Expert Systems 

with Applications, Volume 259, 125239, https://doi.org/10.1016/j.eswa.2024.125239 

https://doi.org/10.1016/j.eswa.2024.125239
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In summary, the key ingredients of the proposal are the Lorenz curve, the dual Lorenz curve and the 

concordance curve, which are statistical tools widely used to summarize the distribution of income 

and wealth. In the paper we propose to extend these tools to provide a set of metrics that can assess 

the compliance of AI applications, within a common unified framework. 

 

 

A Rank Graduation Box for SAFE AI 
 

Abstract: The growth of Artificial Intelligence applications requires to develop risk management 

models that can balance opportunities with risks. We contribute to the development of Artificial 

Intelligence risk models proposing a Rank Graduation Box (RGB), a set of integrated statistical metrics 

that can measure the “Sustainability” , “Accuracy”, “Fairness” and “Explainability” of any Artificial 

Intelligence application. Our metrics are consistent with each other, as they are all derived from a 

common underlying statistical methodology: the Lorenz curve. The validity of the metrics is assessed 

by means of their practical application to both simulated and real data. The results from the 

comparison of alternative machine learning models to simulated data are aligned with the generating 

models, indicating regression models as the most accurate for Gaussian data, Random Forest models 

as the most robust and fair; and leading to model explanations similar to the true ones from the 

generating model. The results from the application of Random Forest models to real data show that 

the proposed RGB metrics are more interpretable and more consistent with the expectations, with 

respect to standard metrics such as AUC, RMSE and Shapley values. The evidence also shows that the 

RGB metrics are very general, and can be applied to any machine learning method, regardless of the 

underlying data and model. 



1. Background and motivation

Machine Learning (ML) methods are boosting the applications of Artificial

Intelligence (AI) in all human activities. Differently from ordinary computer

software and applications, AI not only converts inputs into outputs, but can

also change the surrounding environment, with the risk of creating harms for

individuals, organisations and the environment.

This is the reason why policy makers, regulators and standard bodies around

the world are issuing regulations and recommendations that AI developers, de-

ployers and users should follow to manage the risks arising from the adoption

of AI methods.

AI risk management requires to develop a consistent set of AI risk metrics

that can be employed to monitor the compliance of AI applications. Such a set

of metrics is not common practice, yet.

Recently, Giudici & Raffinetti (2023) have summarised the requirements

in the existing regulations and recommendations into four main measurable

“S.A.F.E.” key principles: “S” for sustainability; “A” for accuracy; “F” for

fairness; “E” for explainability.

Sustainability refers to the robustness of an AI system to extreme events,

such as cyber attacks or environmental issues. The measurement of robustness

is well known in the statistics and machine learning literature and it is usu-

ally conducted in terms of the difference between the accuracy of two different

predictions, obtained respectively under normal and perturbed input data. Ac-

curacy can be measured by the AUC or by the RMSE (see, e.g. Nair et al.

(2022)).

The measurement of Accuracy is well known in the statistics and machine

learning: the Root Mean Square Error (RMSE) is routinely employed for a
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continuous response; the Area Under the ROC curve (AUC or AUROC) is typi-

cally employed for a binary response (see e.g. Hand & Till (2001) and Gneiting

(2011). More recently, Raffinetti (2023) and Giudici & Raffinetti (2024)have in-

troduced a new accuracy measure that can be applied to both type of responses,

generalising the AUC to the continuous case.

Fairness is one of the most important requirements for AI applications. Un-

fairness indicates that the output leads to an unequal treatment of different

population groups, by gender, age and nationality, for example. There are sev-

eral recent research papers that deal with the measurement of fairness. Most of

them are based on parity measures, which calculate the difference in accuracy

of the AI output obtained separately on different population groups. Accuracy

can be measured employing AUC or RMSE, see e.g. Le Quy et al. (2022).

Explainability is a requirement that has emerged with the development of

highly accurate machine learning models which have, however, so many pa-

rameters that it is very difficult, to reconduct the output to the inputs which

determine it. The measurement of explainability requires to attach to each input

variable an importance weight which expresses its influence on the final output.

A model is explainable if there exists at least one input variable which signifi-

cantly impacts the output. In white-box models, such as regression models, such

weights are functions of the estimated parameters. Instead, to explain black-

box models, such as random forests and deep learning, further post-processing

of the output is necessary. The most employed techniques are based on Shapley

values (see, e.g. (Shapley, 1953; Lundberg & Lee, 2017; Giudici & Raffinetti,

2021).

A recent paper Giudici et al. (2024) suggested to measure the S.A.F.E. prin-

ciples using state of the art metrics, such as AUC, RMSE and Shapley values

which are not, however, consistent with each other. A more consistent mea-

surement model was put forward by Giudici & Raffinetti (2023), who replaced

traditional metrics with new ones based on Lorenz Zonoids, the multivariate

extension of the Gini coefficient. While mathematically sound, their approach

suffers from computational complexity, especially when a large number of ex-
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planatory variables are considered.

What described so far can be summarised in a concise picture of the state

of the art for AI risk measurement, which is reported in Table 1.

AI principle Main reference Main contribution

Sustainability
Nair et al. (2022) Change in RMSE or AUROC with

respect to extreme data

Giudici et al. (2024) Regularisation and model selection

Giudici & Raffinetti (2023) Concentration of Shapley-Lorenz values

Accuray

Hand & Till (2001); Gneiting (2011) RMSE (continuous case); AUROC

(binary case)

Raffinetti (2023); Giudici & Raffinetti (2024) RGA (binary and continuous case)

Giudici et al. (2024) AUROC, RMSE

Giudici & Raffinetti (2023) Lorenz Zonoids

Fairness Le Quy et al. (2022) Parity measures (difference in RMSE

or AUROC)

Giudici et al. (2024) Variability of Shapley values

Giudici & Raffinetti (2023) Variability of Shapley-Lorenz values)

Explainability

Shapley (1953) Shapley-values in game theory

Lundberg & Lee (2017) Shapley-values in machine learning

Giudici & Raffinetti (2021) Shapley-Lorenz values: normalised Shapley

Giudici et al. (2024) Shapley values

Giudici & Raffinetti (2023) Shapley-Lorenz values

Table 1: Literature review on the key principles for AI risk management

The aim of this paper is to propose a set of metrics for AI risk measure-

ment that are consistent with each other, as the metrics proposed by Giudici &

Raffinetti (2023), but are also simple to understand and to implement, as the

traditional metrics proposed in Giudici et al. (2024).

To this purpose, we extend the approach by Giudici & Raffinetti (2023)

in two main ways: a) we employ the Concordance curve and, specifically, the

Rank Graduation Accuracy measure (RGA) to extend the AUROC metrics to

the ordinal and continuous cases; b) in analogy with the construction of the

RGA, we propose a “Rank Graduation Box (RGB)”, a set of consistent metrics,

all based on the notion of concordance between two cumulative distributions.

Doing so, we obtain a set of metrics that is easy to interpret, similarly to the well

known Area Under the ROC Curve; that is easy to implement and compute,
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using a similar logic; that is generalisable to other AI compliance principles, that

may emerge from future recommendations, as long as they require a comparison

between two cumulative distributions.

We remark that both Giudici et al. (2024) and Giudici & Raffinetti (2023)

consider financial applications. Finance provides very challenging machine learn-

ing problems and is highly regulated, thus justifying the development of AI risk

metrics. However, the AI risk metrics that we are going to present can be sim-

ilarly applied to other important fields of application of AI, such as medicine,

automotive, robotics and fault tolerance.

The rest of the paper is organized as follows: Section 2 introduces the the-

oretical framework of our proposal and the description of the proposed RGB

metrics; Section 3 presents the application of our proposal, respectively to a

simulated and a real dataset, to assess the validity of the proposal; Section 4

concludes the paper with some final remarks and comments.

2. Methodology

In this section, we describe our proposal. Specifically, in Subsection 2.1, we

show the functioning of the Lorenz, dual Lorenz and concordance curves, which

represent the common mathematical background of all our proposed metrics; in

Subsection 2.2 we define the proposed Rank Graduation Box metrics to assess

Sustainability, Accuracy, Fairness and Explainability of AI applications. Finally,

in Section 2.3, we introduce a set of statistical tests that can be employed to

assess the statistical significance of the proposed metrics.

2.1. Theoretical background

The basic ingredients of our proposal are the Lorenz curve and the related

notions of dual Lorenz curve and concordance curve, which are statistical tools

widely used to summarise the distribution of income and wealth (see, e.g. Lorenz,

1905).
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Formally, let Y ∗ and Y ∗∗ be any two statistical distributions (continuous,

ordinal or binary), each defined on a set of n data points, which we are going

to compare.

The Y ∗ values can be ordered in a non-decreasing sense to build the Lorenz

curve LY ∗ . For i = 1, . . . , n, the Lorenz curve is defined by the pairs: (i/n,∑i
j=1 y

∗
r∗j
/(nȳ∗)), where r∗j indicates the non-decreasing ranks of Y ∗ and ȳ∗

indicates the mean of Y ∗.

The same Y ∗ values can be ordered in a non-increasing sense to build the

dual Lorenz curve, L
′

Y ∗ . For i = 1, . . . , n, the dual Lorenz curve is defined by

the pairs: (i/n,
∑i

j=1 y
∗
r∗n+1−j

/(nȳ∗)), where r∗n+1−j indicates the non-increasing

ranks of Y ∗.

The concordance curve C can be derived ordering the Y ∗ values with respect

to the ranks of the Y ∗∗ values. Let r∗∗i , for i = 1, . . . , n, denote the non-

decreasing ranks of Y ∗∗. For i = 1, . . . , n, the concordance curve is defined by

the pairs: (i/n,
∑i

j=1 y
∗
r∗∗j
/(nȳ∗)).

To illustrate the construction of the Lorenz, dual Lorenz and concordance

curves, we now introduce a toy example. Let Y ∗ and Y ∗∗ be two vectors

of n = 10 points, with Y ∗ = {12, 27, 48, 3, 34, 11, 0, 46, 75, 28} and Y ∗∗ =

{15, 12, 18, 24, 21, 27, 33, 30, 36, 39}. It follows that the mean value of Y ∗, ȳ∗,

is equal to 28.4. The x-axis and y-axis values of the Lorenz curve are reported

in Table 2. The curve is then obtained joining (n + 1) points: the (0, 0) point

with all points whose coordinates are specified in Table 2.

The x-axis values of the dual Lorenz curve are the same as those of the

Lorenz curve, whereas the y-axis values are obtained cumulating the Y ∗ values

in the reverse order. The resulting coordinate pairs of the dual Lorenz curve

are reported in Table 3, and the dual Lorenz curve is then obtained joining the

(0, 0) point with all the other points in Table 3.

For the concordance curve, the x-axis values are as before, whereas the y-axis

are obtained cumulating the Y ∗ values according to the ranks of Y ∗∗. Both are

reported in Table 4. The concordance curve connects the (0, 0) point with all

the other points in Table 4.
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ID y∗
i y∗

r∗
i

∑i
j=1 y∗

r∗
j

y-axis values

(∑i
j=1 y∗

r∗
j

nȳ∗

)
x-axis values

(
i
n

)
1 12 0 0 0 0.1

2 27 3 3 0.01 0.2

3 48 11 14 0.05 0.3

4 3 12 26 0.09 0.4

5 34 27 53 0.19 0.5

6 11 28 81 0.29 0.6

7 0 34 115 0.40 0.7

8 46 46 161 0.57 0.8

9 75 48 209 0.74 0.9

10 28 75 284 1 1

Table 2: Construction of the Lorenz curve

ID y∗
i y∗

r∗
n+1−j

∑i
j=1 y∗

r∗
n+1−j

y-axis values

(∑i
j=1 y∗

r∗
n+1−j

nȳ∗

)
x-axis values

(
i
n

)
1 12 75 75 0.26 0.1

2 27 48 123 0.43 0.2

3 48 46 169 0.60 0.3

4 3 34 203 0.71 0.4

5 34 28 231 0.81 0.5

6 11 27 258 0.91 0.6

7 0 12 270 0.95 0.7

8 46 11 281 0.99 0.8

9 75 3 284 1 0.9

10 28 0 284 1 1

Table 3: Construction of the dual Lorenz curve

Having clarified the calculation of the coordinates of the Lorenz, dual Lorenz

and concordance curves with a toy example, we now represent them in four

distinct stylised scenarios, in Figure 1.

Reading Figure 1, from the top left diagram and clockwise, it follows that:

[a] when r∗∗i = r∗i , for all i = 1, . . . , n, the concordance curve coincides with the

Lorenz curve (full concordance); [b] when r∗∗i = r∗n+1−i, for all i = 1, . . . , n, the

concordance curve coincides with the dual Lorenz curve (full discordance); [c]

when r∗∗i are all equal to each other, for all i = 1, . . . , n, the concordance curve

overlaps with the 45-degree line (no association) meaning that, as all the Y ∗∗

values are tied, the Y ∗ values have to be replaced by their mean value ȳ∗ (see
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Figure 1: The LY ∗ and L
′

Y ∗ Lorenz curves, the concordance curve C and the

45-degree line in the case of: [a] a full concordance scenario; [b] a full discordance

scenario; [c] a no association scenario; [d] an intermediate scenario. Note that p

(on the x-axis) and f(p) (on the y-axis) are the cumulative values of the x and

y coordinates of the LY ∗ , L
′

Y ∗ and C curves.
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ID y∗
i y∗

r∗∗
j

∑i
j=1 y∗

r∗∗
j

y-axis values

(∑i
j=1 y∗

r∗∗
j

nȳ∗

)
x-axis values

(
i
n

)
1 12 27 27 0.10 0.1

2 27 12 39 0.14 0.2

3 48 48 87 0.31 0.3

4 3 34 121 0.43 0.4

5 34 3 124 0.44 0.5

6 11 11 135 0.48 0.6

7 0 46 181 0.64 0.7

8 46 0 181 0.64 0.8

9 75 75 256 0.90 0.9

10 28 28 284 1 1

Table 4: Construction of the concordance curve.

Ferrari & Raffinetti, 2015); [d] in general, the distance between the concordance

curve C and the Lorenz curve measures how the ranks of Y ∗∗ differ from the

ranks of Y ∗, in terms of the ranked values.

Figure 1 shows that the concordance curve C is always between the LY ∗

Lorenz curve and the L
′

Y ∗ dual Lorenz curve.

We can leverage this observation building a summary measure of the dis-

tance between the concordance curve and the two Lorenz curves, which will

be the kernel of all our Rank Graduation Box risk metrics. We can divide the

area between the concordance curve C and the dual Lorenz curve by its max-

imum value, corresponding to the area between the Lorenz and dual Lorenz

curves. Such a normalised summary will be named “Rank Graduation” (RG·)

measure.More formally, the Rank Graduation measure is defined as:

RG·=

∑n
i=1

{
1

nȳ∗

(∑i
j=1 y

∗
r∗n+1−j

−
∑i

j=1 y
∗
r∗∗j

)}
∑n

i=1

{
1

nȳ∗

(∑i
j=1 y

∗
r∗n+1−j

−
∑i

j=1 y
∗
r∗j

)}
=

∑n
i=1 iy

∗
r∗∗i

−
∑n

i=1 iy
∗
r∗n+1−i∑n

i=1 iy
∗
r∗i

−
∑n

i=1 iy
∗
r∗n+1−i

, (1)

where, for any i = 1, . . . , n: r∗i are the non-decreasing ranks of the y∗i values; r∗∗i

are the non-decreasing ranks of the y∗∗i values; r∗n+1−i are the non-increasing
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ranks of the y∗i values; ȳ∗ is the mean of the y∗i values.

In summary, in this subsection we have shown how to extend the mathe-

matical framework underlying the Lorenz curve to obtain a Rank Graduation

measure, which will be the common basis of the Rank Graduation Box that is

going to be described in the next Subsection.

2.2. Rank Graduation Box metrics

In this section, we will describe how to employ the Rank Graduation mea-

sure to derive AI risk metrics for “Sustainability”, “Accuracy”, “Fairness” and

“Explainability”. We remark that the derivation is rather general, and other

metrics can be developed, once specified from regulatory viewpoint, using the

same logic, and put in a comprehensive “Rank Graduation Box” aimed at as-

sessing the overall risk of AI applications.

We first consider “Accuracy”. Accuracy requires that the output of an AI

application is “close” to the observed (or expected) output.

Given a target variable Y and a set of K predictors, a machine learning

model can be applied to obtain predictions, Ŷ . The RGA measure can then be

derived from RG· in equation (1) letting Y ∗ = Y and Y ∗∗ = Ŷ .

We can then interpret Figure 1 in terms of accuracy, once Y ∗ is replaced by

Y and Y ∗∗ by Ŷ . The best scenario [a] occurs when the predicted ranks of the

response variable Y are equal to the observed ranks, with the concordance curve

C perfectly overlapping the Lorenz curve LY (top left graph); the worst scenario

[b] occurs when the predicted ranks of the response variable are equal to the

reversed observed ranks, with the concordance curve C perfectly overlapping

the dual Lorenz curve L
′

Y (top right graph); the no association [c] scenario is

achieved for a model that produces random predictions, leading to a concordance

curve overlapping the 45 degree-line (bottom left graph); in the general scenario

[d] (bottom right graph), the concordance curve C lies in the area between the

Y response variable Lorenz curve, LY , and its dual, L
′

Y .

It can be shown that 0 ≤ RGA ≤ 1, with RGA = 1 for a perfectly concordant

model (C ≡ LY ); RGA = 0 for a perfectly discordant model (C ≡ L
′

Y ); RGA
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= 0.5 for random predictions (C coincides with the 45-degree line).

We remark that the RGA metric was originally introduced by Raffinetti

(2023) to measure accuracy, independently of the nature of the response vari-

able. Indeed, when the response is binary, the RGA measure coincides with the

AUROC (see, e.g. Giudici & Raffinetti, 2024). It can however be calculated, in

the same manner, also for ordinal and continuous responses. In the remaining

part of this subsection we show how the reasoning behind the RGA can be ex-

tended to other metrics, leading to a unified framework to assess the compliance

and risk of AI, based on the RG· metric.

We now consider “Sustainability”. Sustainability is related to the robustness

of AI applications. The output of AI may be affected by extreme data, either

internal or generated by cyber attacks, which can distort the inputs of an AI

application and, consequently, its output.

The measurement of robustness is usually conducted in terms of an ap-

propriate distance between the model predictions and those obtained under

(intentional or non intentional) data perturbations.

The distance provided by the RG· metric can be quite useful in this context,

as it is based on a distance between ranks which is, by definition, more robust

to outliers and extreme data than distances based on the actual values, such as

the Root Mean Square Error.

We propose to measure the robustness of AI applications by means of a

“Rank Graduation Robustness” measure, denoted with RGR, which can be

obtained setting in equation (1) Y ∗ = Ŷ and Y ∗∗ = Ŷ p, with Ŷ and Ŷ p the

predicted values obtained using the non-perturbed data and the predicted values

obtained using perturbed data, respectively.

We can then interpret Figure 1 in terms of robustness, once Y ∗ is replaced

by Y ∗ = Ŷ and Y ∗∗ by Y ∗∗ = Ŷ p.

From Figure 1, note that the case of maximum robustness [a] occurs when

the ranks of the response predicted values Ŷ correspond to the ranks of the

predicted values obtained using the perturbed data, with the concordance curve

C perfectly overlapping the Lorenz curve LŶ ; the worst case [b] occurs when
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the ranks of the Ŷ response predicted values are in inverse correspondence with

the ranks of the predicted values obtained using the perturbed data, with the

concordance curve C perfectly overlapping the dual Lorenz curve L
′

Ŷ
; the [c]

case occurs when the concordance curve C overlaps the 45-degree implying that

perturbations on the input data lead to random predictions; the general case

[d] occurs when the concordance curve C lies in the area between the Ŷ Lorenz

curve, LŶ , and its dual, L
′

Ŷ
.

It can be shown that RGR takes values in the close range [0, 1]. RGR = 1 for

a fully robust model (C ≡ LŶ ); RGR = 0 for a fully perturbed model (C ≡ L
′

Ŷ
);

RGR = 0.5 if the perturbations lead to a random model.

We now consider the measurement of “Explainability”. The standard met-

rics for explainability are Shapley Lorenz and their variants, such as Shapley

Lorenz values. Both are computationally intensive and their calculation, when

a large amount of input variables is involved, may become infeasible.

In this paper, we propose to overcome this drawback adapting equation (1)

to the measurement of explainability, leading to a “Rank Graduation Explain-

ability” (RGE) metric. More precisely, we let Y ∗ = Ŷ and Y ∗∗ = Ŷ (−Xk), where

Ŷ are the predicted values from a full model (which includes all K predictors)

and Ŷ (−Xk) are the predicted values from a reduced model (which excludes the

k-th predictor under evaluation).

We remark that the stronger is the effect of a variable Xk on explaining

Y , the larger is the divergence between the ranks of the full model predicted

values and those associated with the reduced model. Thus, for interpretational

purpose, once let Y ∗ = Ŷ and Y ∗∗ = Ŷ (−Xk), we will define RGE as RGE = 1−

RG·.

Interpreting Figure 1 in terms of explainability, note that the case of mimi-

mum explainability [a] occurs when the ranks of the response predicted values

Ŷ correspond to the ranks of the Ŷ −Xk predicted values (obtained by fitting the

model without the k-th predictor), with the concordance curve C perfectly over-

lapping the Lorenz curve LŶ (left graph); the case of maximum explainability

[b] occurs when the ranks of the Ŷ response predicted values is in inverse cor-
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respondence with the ranks of the Ŷ (−Xk) predicted values (obtained by fitting

the model on the data without the k-th predictor), with the concordance curve

C perfectly overlapping the dual Lorenz curve L
′

Ŷ
; the case [c] arises when the

concordance curve C is equivalent to the 45-degree line meaning that the Ŷ −Xk

predicted values are random predictions; the general case [d] occurs when the

concordance curve C lies in the area between the Ŷ Lorenz curve, LŶ , and its

dual, L
′

Ŷ
. Based on the previous considerations, it holds that 0 ≤ RGE ≤ 1.

Specifically: RGE = 1 if the k-th predictor provides the maximum explanation

(C ≡ L
′

Ŷ
); RGE = 0 if the k-th predictor does not contribute to the explanation

of the response (C ≡ LŶ ); RGE = 0.5 if the model without the k-th predictor

corresponds to the random model (C coincides with the 45-degree line).

We finally consider the measurement of “Fairness”. Fairness is typically mea-

sured by parity measures, which compare the AI outputs obtained separately

on different population groups. This group based comparison is unconditional

on the values of the other input variables, and it is not useful to assess, besides

unfairness, its reasons. Furthermore, it may lead to paradoxes: the output may

be fair marginally, but not conditionally on a control variable. For example, a

credit score may be fair with respect to the gender of the borrower overall, but

not conditionally on the level of income of the borrower.

We propose to overcome the difficulties of parity measures adapting formula

(1) to the fairness context, leading to the “Rank Graduation Fairness” (RGF)

metric.

More precisely, given a set G of group variables, converted into G binary

variables, to calculate RGF we let Y ∗ = Ŷ and Y ∗∗ = Ŷ (−Xg), where Ŷ are the

predicted values obtained with a full model (including all the G group variables

as predictors); and Ŷ (−Xg) are the predicted values obtained with a reduced

model (that excludes the g-th group binary variable under evaluation).

We can now interpret Figure 1 in terms of the RGF measure. The maxi-

mum fairness scenario [a] arises when the ranks of the response predicted values

Ŷ correspond to the ranks of the Ŷ (−Xg) predicted values (obtained by fitting

the model without the g-th group variable), with the concordance curve C per-
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fectly overlapping the Lorenz curve LŶ (left graph); the maximum unfairness

condition [b] arises when the ranks of the Ŷ response predicted values are in

inverse correspondence with the ranks of the Ŷ (−Xg) predicted values (obtained

by fitting the model on data without the g-th group variable), with the con-

cordance curve C perfectly overlapping the dual Lorenz curve L
′

Ŷ
; in the case

[c], the concordance curve C coincides with the 45-degree line, indicating that

the Ŷ (−Xg) predicted values without the g-th group variable correspond to a

random model; in the intermediate scenario [d], the concordance curve C lies in

the area between the Ŷ Lorenz curve, LŶ and its dual, L
′

Ŷ
. It can be shown that

0 ≤ RGF ≤ 1. More precisely: RGF = 1 (C ≡ LŶ ) in the case of maximum

fairness; RGF = 0 (C ≡ L
′

Ŷ
) in the case of maximum unfairness. RGF = 0.5

if the model without the g-th group variable corresponds to the random model.

For the sake of clarity, the toy example introduced in Section 2.1 is further

exploited in the Appendix Section to show how the RGA, RGR, RGE and RGF

can be practically computed.

In summary, in this subsection we have shown how to adapt the Rank Grad-

uation measure, illustrated in the previous subsection, to measure different com-

pliance aspects of AI: Accuracy, by means of RGA; Sustainability, by means of

RGR; Explainability, by means of RGE; and fairness, by means of RGF. The

application of the metrics to an AI application can assess its compliance and

risks.

2.3. Statistical tests

The introduced RG· metric can be complemented with statistical tests that

can indicate whether the found degree of sustainability, accuracy, fairness or

explainability is significantly high or not, taking into account the sampling vari-

ability.

To this aim, we now derive two statistical tests based on the RG· metric.

The first test can be applied to RGA and RGR. For both cases, RG· can be

expressed in terms of the covariance operator as follows:
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RG· = 1

2

cov(Y ∗
r(Y ∗∗), F (Y

∗))

cov(Y ∗, F (Y ∗))
+

1

2
, (2)

where Y ∗
r(Y ∗∗) represents the Y ∗ variable re-ordered according to the ranks

of Y ∗∗ and F is the cumulative continuous distribution function of Y ∗.

It follows that the RG· is a linear function of the ratio:

ψ(Y ∗, Y ∗∗) = cov(Y ∗
r(Y ∗∗), F (Y

∗))/cov(Y ∗, F (Y ∗)). (3)

We recall that Y ∗ and Y ∗∗ have two different roles: for RGA, they represent

the target variable Y to be predicted (i.e., Y ∗ = Y ) and the predicted values Ŷ

(i.e., Ŷ = Y ∗∗); for RGR, they represent the predicted values Ŷ , provided by

the model fitted on non-perturbed data, and the predicted values Ŷ p, derived

from the same model fitted on perturbed data (i.e., Y ∗∗ = Ŷ p).

Given two alternative models (Mod1 and Mod2), the statistics in (3) can be

used to test the following hypotheses:

H0 : ψ(Y ∗
Mod1

, Y ∗∗
Mod1

) = ψ(Y ∗
Mod2

, Y ∗∗
Mod2

) vs H1 : ψ(Y ∗
Mod1

, Y ∗∗
Mod1

) ̸= ψ(Y ∗
Mod2

, Y ∗∗
Mod2

),

(4)

where

ψ(Y ∗
Mod1

, Y ∗∗
Mod1

) = cov(Y ∗
r(Y ∗∗

Mod1
), F (Y

∗
Mod1

))/cov(Y ∗
Mod1

, F (Y ∗
Mod1

))

and

ψ(Y ∗
Mod2

, Y ∗∗
Mod2

) = cov(Y ∗
r(Y ∗∗

Mod2
), F (Y

∗
Mod2

))/cov(Y ∗
Mod2

, F (Y ∗
Mod2

))

are functions that derive from the application of (3), respectively to RG·Mod1

and RG·Mod2 .

Note that the estimator of ψ(Y ∗
Mod1

, Y ∗∗
Mod1

) can be expressed as a function

of two dependent U-statistics, denoted with U1 and U2:

ψ̂(Y ∗
Mod1

, Y ∗∗
Mod1

) =
U1

U2
=

1

4(n2)

∑n
i=1(2i− 1− n)Y ∗

r(Y ∗∗
iMod1

)

1

4(n2)

∑n
i=1(2i− 1− n)Y ∗

r(Y ∗
iMod1

)

. (5)
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Similarly, the estimator of ψ(Y ∗
Mod2

, Y ∗∗
Mod2

) can be defined as a function of

two dependent U-statistics, U3 and U4:

ψ̂(Y ∗
Mod2

, Y ∗∗
Mod2

) =
U3

U4
=

1

4(n2)

∑n
i=1(2i− 1− n)Y ∗

r(Y ∗∗
iMod2

)

1

4(n2)

∑n
i=1(2i− 1− n)Y ∗

r(Y ∗
iMod2

)

(6)

It follows that δ = ψ(Y ∗
Mod1

, Y ∗∗
Mod1

)−ψ(Y ∗
Mod2

, Y ∗∗
Mod2

) can be estimated by

δ̂, a function of four dependent U-statistics:

δ̂ = ψ̂(Y ∗
Mod1

, Y ∗∗
Mod1

)− ψ̂(Y ∗
Mod2

, Y ∗∗
Mod2

) =
U1

U2
− U3

U4
. (7)

According to Hoeffding (1948), a function of several dependent U-statistics

has a normal distribution, provided that the sample size is large enough. Thus,

the estimator in equation (7) has a limiting normal distribution, whose variance

V ar(δ̂)

∧

can be estimated by means of the Jackknife method (see, e.g. Efron &

Stein, 1981) each time omitting the pairs (Y ∗
Mod1

, Y ∗∗
Mod1

) and (Y ∗
Mod2

, Y ∗∗
Mod2

).

Therefore, a test statistic for testing the null hypothesisH0 : ψ(Y ∗
Mod1

, Y ∗∗
Mod1

) =

ψ(Y ∗
Mod2

, Y ∗∗
Mod2

) is:

Z =
δ̂√

V ar(δ̂)

∧→ N(0, 1), (8)

where, for i = 1, . . . , n: V ar(δ̂)

∧

= n−1
n

∑n
i=1(δ̂(−i) − δ̄)2; δ̂(−i) are the values

of δ̂ by omitting the pairs (Y ∗
Mod1

, Y ∗∗
Mod1

) and (Y ∗
Mod2

, Y ∗∗
Mod2

) at a time; δ̄ is the

average of the values δ̂(−i).

For a fixed significance level α, a rejection region for the test corresponds to

the region |Z| ≥ zα/2. If the test statistic falls in this region, Mod1 and Mod2

are significantly different from each other.

Note that: in the case of RGA, Y ∗
Mod1

= Y ∗
Mod2

, being Y ∗ = Y , i.e. the

observed target variable to be predicted based on two alternative models Mod1

and Mod2; in the case of RGR, Y ∗
Mod1

̸= Y ∗
Mod2

, being Y ∗
Mod1

= ŶMod1
and

Y ∗
Mod2

= ŶMod2 , i.e. the predicted values computed on non-perturbed data and

provided by Mod1 and Mod2, respectively.
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We now derive a second test, aimed to assess the significance of RGE and

RGF. In this case Y ∗ corresponds to the predicted values obtained with a full

model while Y ∗∗ corresponds to the predicted values generated by the reduced

model, that is the model without the k-th variable, for RGE; and without the g-

th group variable for RGF. It follows that a suitable test statistic can be defined

as the difference between the denominator and the numerator of (3):

γ(Y ∗, Y ∗∗) = cov(Y ∗, F (Y ∗))− cov(Y ∗
r(Y ∗∗), F (Y

∗)). (9)

By resorting to γ(Y ∗, Y ∗∗), the hypotheses

H0 : γ(Y ∗, Y ∗∗) = 0 vs H1 : γ(Y ∗, Y ∗∗) ̸= 0, (10)

can be tested.

Note that the estimator of γ(Y ∗, Y ∗∗) can be expressed as a function of two

dependent U-statistics, denoted with Ũ1 and Ũ2:

γ̂(Y ∗, Y ∗∗) = Ũ1−Ũ2 =
1

4
(
n
2

) n∑
i=1

(2i−1−n)Y ∗
r(Y ∗

i )−
1

4
(
n
2

) n∑
i=1

(2i−1−n)Y ∗
r(Y ∗∗

i ).

(11)

By exploiting Hoeffding’s Theorem (see, e.g. Hoeffding, 1948), (11) has a

limiting normal distribution whose variance V ar(γ̂) can be estimated through

the Jackknife method giving rise to the test statistic:

Z =
γ̂√

V ar(γ̂)
∧→ N(0, 1), (12)

where, for i = 1, . . . , n: V ar(γ̂)
∧

= n−1
n

∑n
i=1(γ̂(−i)− γ̄)2; γ̂(−i) are the values

of γ̂ by omitting one pair (Y ∗, Y ∗∗) at a time; γ̄ is the average of the values

γ̂(−i).

For a fixed significance level α, a rejection region for the test corresponds to

the region |Z| ≥ zα/2.

In summary, in this subsection we have shown how to improve the robustness

of the results from the application of the proposed RGB metrics. Essentially, by
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means of statistical tests that can verify whether the obtained assessments for

Sustainability, Accuracy, Fairness and Explainability are statistically significant.

3. Empirical analysis

In this Section we apply the described Rank Graduation Box metrics. We

consider both a simulated and a real data set.

Specifically, the simulation settings and the related results are presented and

discussed in Section 3.1, whereas the application of our proposal to real surveys

is described in Section 3.2.

3.1. Simulated data

For simulated data, we illustrate the experimental design in Subsection 3.1.1

and the obtained empirical findings in Subsection 3.1.2.

3.1.1. Experimental designs

We simulate 1, 000 times 100 five-dimensional samples (Y,X1, X2, X3,

X4), from a five-dimensional Normal distribution, with mean µ and correlation

matrix Σ. We assume, without loss of generality, that µ = {150, 20, 72, 5, 200}.

For the correlation matrix, we consider two alternative specifications: Σ = S1,

as in Table 5; and Σ = S2, as in Table 6, with different correlations between the

target variable and the predictors. We also simulate the 1,000 samples from a

non-Normal distribution, with mean and correlation matrices as before, plus a

skewness parameter at ν = 3 and a kurtosis parameter at κ = 61.

Y X1 X2 X3 X4

Y 1 0.6 0.4 0.3 0.1

X1 1 0.2 0.7 0.3

X2 1 0.05 0.1

X3 1 0.5

X4 1

Table 5: Correlation matrix S1
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Y X1 X2 X3 X4

Y 1 0.1 0.5 0.2 0.8

X1 1 0.3 0.6 0.3

X2 1 0.05 0.1

X3 1 0.5

X4 1

Table 6: Correlation matrix S2

We thus obtain four experimental settings: (A) 1,000 samples of size 100 from

a Normal distribution with correlation matrix S1, (B) 1,000 samples of size 100

from a Normal distribution with correlation matrix S2; (C) 1,000 samples of

size 100 from a non-Normal distribution with correlation matrix S1; (D) 1,000

samples of size 100 from a non-Normal distribution with correlation matrix S2.

To measure robustness, in all four scenarios the predictors are then perturbed

in the train set by replacing the left and right tails of the related distributions

with outliers. Specifically, the values lower than the 15% percentile are replaced

by observations sampled from a U(−6,−4) distribution, whereas the values

greater than the 85% percentile are replaced by observations sampled from a

U(15, 22) distribution.

We have then run three alternative machine learning models on the simulated

data: a linear regression model, a regression tree model and a Random Forest

model. While the linear regression model is explainable by design and the

regression tree can be explained by visualizing its tree, the Random Forest is a

full black-box model.

The proposed metrics (RGA, RGR, RGE and RGF) have then been applied

to compare the three machine learning models in terms of accuracy, robust-

ness, explainability and fairness. All models have been fit on the same training

set (80% of the observations) and evaluated on the same test set (20% of the

observations).
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3.1.2. results

The results of the RGA, RGR, RGF and RGE metrics can be summarised

by their mean and standard deviations along the 1,000 considered samples.

Table 7 and Table 8 show the results for experiment (A).

RGA Mean Standard deviation (sd)

Linear regression 0.8297 0.0722

Regression tree 0.7569 0.0882

Random Forest 0.7911 0.0835

RGR Mean Standard deviation (sd)

Linear regression 0.6543 0.1943

Regression tree 0.8222 0.1111

Random Forest 0.9445 0.0465

RGF Mean Standard deviation (sd)

Linear regression 0.6627 0.2917

Regression tree 0.9758 0.0801

Random Forest 0.9823 0.0181

Table 7: Summary statistics for RGA, RGR and RGF metrics, for experiment

(A)

From Table 7 note that the linear regression model is the most accurate

model, followed by the Random Forest and by the regression tree model. This is

not surprising, as the generating model is a multivariate Gaussian distribution.

Moving to explainability, Table 8 shows that, in general, the most explainable

predictor is X1, which is indeed the variable with the highest correlation with

Y . Removing variable X1 from any of the three models leads to a change in

the ranked values of about 3%-12%. The importance ranking of the predictors

is almost the same for the tree models: X1 is followed by X2 and, then, by X3

and X4. This is as expected, being the true correlations with Y equal to 0.4,

0.3 and 0.1, respectively. A notable exception is the explanation for X3 with

the linear regression model, which has a very high mean, but also a very high

standard deviation. Taking into account all four metrics, we can conclude that

the Random Forest model is the best model, as the high performance of the

linear regression on RGA may be due to its low robustness.
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RGEX1
Mean Standard deviation (sd)

Linear regression 0.0307 0.0733

Regression tree 0.2379 0.1623

Random Forest 0.1116 0.0709

RGEX2
Mean Standard deviation (sd)

Linear regression 0.0242 0.0483

Regression tree 0.1388 0.1491

Random Forest 0.0703 0.0545

RGEX3
Mean Standard deviation (sd)

Linear regression 0.2594 0.2253

Regression tree 0.1371 0.1340

Random Forest 0.0354 0.0290

RGEX4
Mean Standard deviation (sd)

Linear regression 0.0031 0.0130

Regression tree 0.0466 0.0885

Random Forest 0.0436 0.0387

Table 8: Summary statistics for the RGEmetric, for variables (X1, X2, X3, X4)),

for experiment (A)

The results for experiment (B) are displayed in Table 9 and in Table 10.

RGA Mean Standard deviation (sd)

Linear regression 0.9736 0.0149

Regression tree 0.8828 0.0483

Random Forest 0.9323 0.0353

RGR Mean Standard deviation (sd)

Linear regression 0.2335 0.1431

Regression tree 0.9010 0.0700

Random Forest 0.9591 0.0312

RGF Mean Standard deviation (sd)

Linear regression 0.5784 0.2469

Regression tree 1,000 0.0012

Random Forest 0.9927 0.0062

Table 9: Summary statistics for the RGA, RGR and RGF metrics for experiment

(B)

Table 9 highlights that the linear regression model is again the most accurate
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RGEX1
Mean Standard deviation (sd)

Linear regression 0.0634 0.0951

Regression tree 0.0077 0.0247

Random Forest 0.0285 0.0243

RGEX2
Mean Standard deviation (sd)

Linear regression 0.1312 0.1270

Regression tree 0.0461 0.0742

Random Forest 0.0770 0.0487

RGEX3
Mean Standard deviation (sd)

Linear regression 0.1176 0.1370

Regression tree 0.0254 0.0489

Random Forest 0.0183 0.0147

RGEX4
Mean Standard deviation (sd)

Linear regression 0.2579 0.2264

Regression tree 0.3926 0.1365

Random Forest 0.1750 0.0883

Table 10: Summary statistics for the RGE metric for experiment (B)

model, followed by the Random Forest and the regression tree models.

As in Scenario (A), the linear regression has a worse performance in robust-

ness and fairness. The Random Forest and the regression tree perform better.

In terms of explainability, Table 10 shows that, for all three models, the

predictor X4 contributes the most to the explanation of the target variable Y .

Removing X4 from any of the three models leads to a change in the ranked

values of about 17.5%-26%. On the other hand, X1 in general provides the

smallest contribution in explaining the target variable Y . These findings are

coherent with our expectations as X1 and X4 have, respectively, a low and a

strong correlation with Y in Experiment (B). Overall, we can conclude that, for

this experiment, both linear regression and Random Forest are good models,

the choice depends on which metric is retained more important.

Consider now Experiment (C), whose results are displayed in Tables 11 and

in Table 12.

From Table 11 it turns out that the linear regression model has again the

highest accuracy. The regression model has also a good performance in robust-
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RGA Mean Standard deviation (sd)

Linear regression 0.8263 0.0819

Regression tree 0.7707 0.0914

Random Forest 0.7994 0.0876

RGR Mean Standard deviation (sd)

Linear regression 0.9743 0.0268

Regression tree 0.9378 0.0859

Random Forest 0.9613 0.0364

RGF Mean Standard deviation (sd)

Linear regression 0.7842 0.1078

Regression tree 0.8865 0.1375

Random Forest 0.8968 0.0705

Table 11: Summary statistics for the RGA, RGR and RGF metrics for experi-

ment (C)

RGEX1
Mean Standard deviation (sd)

Linear regression 0.0955 0.0698

Regression tree 0.2502 0.1234

Random Forest 0.1069 0.0657

RGEX2
Mean Standard deviation (sd)

Linear regression 0.0641 0.0578

Regression tree 0.1212 0.1101

Random Forest 0.0752 0.0543

RGEX3
Mean Standard deviation (sd)

Linear regression 0.0068 0.0133

Regression tree 0.0204 0.0458

Random Forest 0.0217 0.0185

RGEX4
Mean Standard deviation (sd)

Linear regression 0.0086 0.0155

Regression tree 0.0250 0.0542

Random Forest 0.0231 0.0233

Table 12: Summary statistics for the RGE metric in experiment (C)
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ness, but it is still low performing in fairness.

Table 12 shows that, also in case of non-normally distributed data, the most

important predictor is X1, followed by X2, X4 and X3. The highest explanation

for X1 is reached with the regression tree, which, however, is also the model

where the RGE metric achieves the largest variability. In this scenario, removing

predictor X1 from any of the three models leads to a change in the ranked values

of about 9.5%-25%. Overall, no one of the three models dominate the others in

terms of all metrics. The choice therefore depends on which metric is considered

most important.

We finally consider experiment (D), whose results are displayed in Table

3.1.2 and in Table 14.

RGA Mean Standard deviation (sd)

Linear regression 0.9666 0.0239

Regression tree 0.8666 0.0598

Random Forest 0.9134 0.0523

RGR Mean Standard deviation (sd)

Linear regression 0.9820 0.0200

Regression tree 0.9398 0.0742

Random Forest 0.9673 0.0295

RGF Mean Standard deviation (sd)

Linear regression 0.5727 0.2279

Regression tree 0.9996 0.0045

Random Forest 0.9804 0.0216

Table 13: Summary statistics for the RGA, RGR and RGF metrics in experi-

ment (D)

Table 3.1.2, shows that the linear regression is more accurate than the Ran-

dom Forest and regression tree. And it also appears as the most robust model

in presence of extreme observations, followed by Random Forest and regression
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RGEX1
Mean Standard deviation (sd)

Linear regression 0.0073 0.0112

Regression tree 0.0070 0.0212

Random Forest 0.0126 0.0105

RGEX2
Mean Standard deviation (sd)

Linear regression 0.0697 0.0541

Regression tree 0.1016 0.0815

Random Forest 0.0828 0.0498

RGEX3
Mean Standard deviation (sd)

Linear regression 0.0036 0.0076

Regression tree 0.0082 0.0238

Random Forest 0.0110 0.0091

RGEX4
Mean Standard deviation (sd)

Linear regression 0.1823 0.0938

Regression tree 0.3163 0.1349

Random Forest 0.1750 0.0862

Table 14: Summary statistics for the RGE metric in experiment (D)

tree. Differently, in terms of fairness, the linear regression model has the worst

performance. In terms of explainability, Table 14 shows that the predictor which

mostly affect the target variable Y is X4, followed by predictor X2. Removing

predictor X4 from any of the three models would imply a change in the ranked

values of about 17%-32%.

To robustify the presented results, helping the final choice between the three

models, we now carry out statistical tests to check whether the difference in

the values of the metrics among the three models is statistically significant. To

this aim, we apply the tests presented in Section 2.3 to compare s = 3 metrics.

Under the null hypotheses, there is no difference among the expected value of

the s metrics. Whereas, under the alternative hypotheses the expected values

differ.

The results of the test, in terms of p-values, are reported in Table 15, for the

RGA, RGR and RGF metrics, and in Table 16 for RGE.

The results of the statistical tests, reported in Tables 15 and 16, highlight

that the metrics computed on the different models are all significantly different
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Experiment (A) Alternative hypothesis p-values

RGA H1 : RGAlin reg > RGARand For > RGAreg tree 0.001

RGR H1 : RGRRand For > RGRreg tree > RGRlin reg 0.001

RGF H1 : RGFRand For > RGFreg tree > RGFlin reg 0.001

Experiment (B) Alternative hypothesis p-values

RGA H1 : RGAlin reg > RGARand For > RGAreg tree 0.001

RGR H1 : RGRRand For > RGRreg tree > RGRlin reg 0.001

RGF H1 : RGFreg tree > RGFRand For > RGFlin reg 0.001

Experiment (C) Alternative hypothesis p-values

RGA H1 : RGAlin reg > RGARand For > RGAreg tree 0.001

RGR H1 : RGRlin reg > RGRRand For > RGRreg tree 0.001

RGF RGFRand For > H1 : RGFreg tree > RGFlin reg 0.001

Experiment (D) Alternative hypothesis p-values

RGA H1 : RGAlin reg > RGARand For > RGAreg tree 0.001

RGR H1 : RGRlin reg > RGRRand For > RGRreg tree 0.001

RGF H1 : RGFreg tree > RGFRand For > RGFlin reg 0.001

Table 15: p-values for RGA, RGR, RGF

(p-value < 0.01) in all the considered experiments.

We can therefore conclude that the values of the metrics, previously dis-

cussed, are all statistically significant.

3.2. Real data

In this section, we show how the proposed metrics can be actually employed

to check the compliance of AI applications on real data.

We consider the publicly available “Employee” dataset, which can be di-

rectly uploaded from the stima package in R. The data derives from a study

carried out on the 473 employees of a bank, and includes information on their

gender, age, educational degree (in terms of years of education), employment

category (custodial, clerical, or manager), job time in months since hire, total

work experience (total job time in months, since hire and from previous experi-

ences), minority classification (that is, whether of an ethnic minority), starting

salary (in dollars), and current salary (in dollars). For a better description see

e.g. Ferrari & Raffinetti (2015).
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Experiment (A) Alternative hypothesis p-values

RGEX1
H1 : RGEX1reg tree

> RGEX1Rand For
> RGEX1lin reg

0.001

RGEX2
H1 : RGEX2reg tree

> RGEX2Rand For
> RGEX2lin reg

0.001

RGEX3
H1 : RGEX3lin reg

> RGEX3reg tree
> RGEX3Rand For

0.001

RGEX4
H1 : RGEX4reg tree

> RGEX4Rand For
> RGEX4lin reg

0.001

Experiment (B) Alternative hypothesis p-values

RGEX1
H1 : RGEX1lin reg

> RGEX1Rand For
> RGEX1reg tree

0.001

RGEX2
H1 : RGEX2lin reg

> RGEX2Rand For
> RGEX2reg tree

0.001

RGEX3
H1 : RGEX3lin reg

> RGEX3reg tree
> RGEX3Rand For

0.001

RGEX4
H1 : RGEX4reg tree

> RGEX4lin reg
> RGEX4Rand For

0.001

Experiment (C) Alternative hypothesis p-values

RGEX1
H1 : RGEX1reg tree

> RGEX1Rand For
> RGEX1lin reg

0.001

RGEX2
H1 : RGEX2reg tree

> RGEX2Rand For
> RGEX2lin reg

0.001

RGEX3
H1 : RGEX3Rand For

> RGEX3reg tree
> RGEX3lin reg

0.001

RGEX4
RGEX4reg tree

> H1 : RGEX4Rand For
> RGEX4lin reg

0.005

Experiment (D) Alternative hypothesis p-values

RGEX1
H1 : RGEX1Rand For

> RGEX1lin reg
> RGEX1reg tree

0.001

RGEX2
H1 : RGEX2reg tree

> RGEX2Rand For
> RGEX2lin reg

0.001

RGEX3
H1 : RGEX3Rand For

> RGEX3reg tree
> RGEX3lin reg

0.001

RGEX4
H1 : RGEX4reg tree

> RGEX4lin reg
> RGEX4Rand For

0.001

Table 16: p-values for RGE, for variables (X1, X2, X3, X4)
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We consider both classification and prediction machine learning problems

for the employee data. In the classification problem, the response variable is

binary. It is defined as a “doubling salary”, obtained assigning a level of 1 to

the employees that achieve a salary growth rate (ratio of the current salary to

the starting salary) greater or equal to two, and a level of 0 otherwise. In the

prediction problem, the response variable is directly the “salary growth”, defined

as the difference between two variables, the current salary and the starting

salary.

We consider, for both the prediction and the classification problem, a Ran-

dom Forest model. More specifically, the predicted values for the response

variable are estimated for the test data (corresponding to the 30% of the whole

dataset), employing the model fitted on the train dataset, using all explana-

tory variables, and including the 70% of the observations. We remark that the

choice of a Random Forest model is taken without loss of generality, as it can

ease the interpretation of the results, as we use the same type of models for

both classification and prediction.

We apply the proposed RGA, RGR, RGE and RGFmetrics to the predictions

from the Random Forest model. In the case of RGR we consider perturbing all

input variables, with a perturbation scheme different from what seen for the

simulated data: we replace the values smaller than the 10th percentile with the

values greater than the 90th percentile.

To improve the robustness of our results, we compare the proposed metrics

with existing standard methods. This will provide a benchmark and a clearer

picture of the advantages and limitations of the proposed metrics. Specifically,

the RGA will be compared to the Root Mean Squared Error (RMSE) in the

continuos case and to the AUC in the binary case; the RGR will be compared

with the loss in accuracy when all input data are perturbed; the RGF will be

compared with the difference in accuracy between the model applied separately

on the different population groups; the explanations from RGE will be compared

with those obtained applying Shapley values.

Table 17 report the results from the application of RGA, RGR and RGF,
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along with the benchmark metrics, in the continuous case.

Accuracy RGA RMSE

0.9149 8107.1686

Robustness RGR Accuracy Loss

0.4697 399.6947

Fairness RGF Accuracy Difference

0.9984 5244.0689

Table 17: RGA, RGR, RGF and benchmark measures, continuous response

From Table 17, it results that the RGA is equal to about 91%. We recall

that the higher the RGA value, the better the concordance between the trained

model and the actual values. Here, the RGA value is close to one, meaning

that the predictive accuracy of the model is high. The result is statistically

significant, as it turns out that, if we test the model against a random model,

the p-value is very small, approximately equal to 10−253, thus rejecting the null

hypotheses of equality.

The benchmark measure for RGA is the RMSE which, in this case, is equal

to about 8107. We cannot easily interpret this value, in absolute terms; we

need to make relative comparisons. For example, as the mean salary growth

is about 17409 $, we can conclude that the RMSE is about half of the mean.

The RGA , instead, is normalised and can be interpreted in both absolute

and relative terms. A possible disadvantage of RGA is that, with respect to

RMSE, it requires a further computational step of ordering the response values

with respect to the ranks of the predictions. This, however, allows to compare

models for a continuous response with models with a binary response.

The result of the application of RGR leads to a value of about 47%, which

indicates that the Random Forest model is not so robust in terms of the con-

sidered perturbation of all input variables. However, tha model is significantly

more robust then a random model, as the p-value of the RGR test is approxi-

mately equal to 10−27. The RGR can be compared with the loss in accuracy (in

RMSE) obtained moving from the model with non perturbed data to a model
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with perturbed data. Such difference is equal to 399, about 5% of the original

RMSE, indicating high robustness. This result seems, however, not very reli-

able, considering that all input variables have been perturbed. The RGR seems

more suited to capture lack of robustness. A further advantage of RGR, with

respect to the difference in accuracy, is that it is normalised. This allows an

easier interpretation with respect to the accuracy loss, albeit at the cost of an

extra computational cost.

We now discuss the obtained value for the RGF metrics, taking gender as

the selected protected variable. The result is an RGF close to one, which seems

to indicate that “gender” does not affect the ranks of the target variable “salary

growth”. The result is, however, not statistically significant, as the p-value

for the statistical test on RGA is equal to 0.003: we reject the assumption of

fairness. On the other hand, the standard “parity” measure which compares

the RMSE of the model in the female and male group is equal to 5244: about

64% of the value of the overall RMSE, indicating a similar behaviour of the

model in the two groups. The result is consistent with RGF, the difference is

that RGF, although more expensive computationally, is normalised and, thus,

easier to interpret.

We now consider the case of a binary response. Table 18 report the results

from the application of RGA, RGR and RGF, along with the benchmark metrics,

in the binary case, respectively.

Accuracy RGA AUC

0.6848 0.6848

Robustness RGR Accuracy Loss

0.8591 0.0333

Fairness RGF Accuracy Difference

0.9366 0.1116

Table 18: RGA, RGR, RGF and benchmark measures, binary response

Table 18 highlights the clear advantage of our proposed metrics: we can

compare the performance of the random forest model under two different con-
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figurations of the response. While it is not possible to directly compare RMSE

with AUC; or accuracy loss/difference expressed as difference of RMSE rather

than difference in AUC, the RGB metrics are the same for the binary and the

continuous case. Specifically, the comparison indicates that a continuous re-

sponse is better predicted than a binary response (RGA = 91% vs 68%); that

the model for the continuous response is less robust than the model for the binary

response (47% vs 85%); that the model which predict salary growth (continu-

ous) is more fair than the model which predicts salary doubling (binary) (99%

vs 93%). The application of the statistical tests show that the model is signif-

icantly more accurate and robust than a random model; and that, similarly to

what occurs for a continuous response, the model is not significantly fair, being

the p-value equal to 0.001.

The results for standard metrics are consistent with those from our metrics;

however, the latter have the advantage of a better interpretability and of a wider

comparability, against the disadvantage of an increased computational cost.

We now compare the application of RGE with the standard explainability

metrics: Shapley values. Table 19 report the results from the application of

RGE, along with Shapley values, in both the continuous and the binary case.

Variable RGE Shapley values

jobtime 0.2112 1939.8556

age 0.1901 2050.5184

previous experience 0.1197 557.7384

education 0.1056 1143.2048

manager 0.0986 526.5470

clerical 0.0985 221.5846

minority 0.0915 284.7139

gender 0.0633 208.1586

custodial 0.0563 208.2397

Variable RGE Shapley values

jobtime 0.0355 0.0830

age 0.0151 0.1018

previous experience 0.0130 0.0888

education 0.0180 0.0193

manager 0.0129 0.0221

clerical 0.0004 0.0263

minority 0.0016 0.0180

gender 0.0015 0.0120

custodial 0.0004 0.0085

Table 19: RGE and Shapley values for a random forest model to predict a

continuous reponse (left) and a binary response (right)

Table 19 shows that, consistently with the results obtained for RGA, the

continuous response is better predicted by the random forest model. The most
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important explanation of the salary growth is age, followed by jobtime, previous

experience and also education. For the binary response, the ranking is similar,

but the values are all smaller. Indeed, the standard Shapley values do not allow

an easy comparison between the values of the two problems, binary and continu-

ous. However, in both cases, the ranking are consistent with those of the RGE.

Once more, the comparison shows that our proposed metric is, while consis-

tent, easier to interpret than the benchmark. From a computational complexity

viewpoint, Shapley values are computationally expensive, more than the RGE,

as they require calculating the difference in predictions for all possible models.

A further comparison between our proposed RGB metrics and standard ones

can be conducted by means of resampling. For example, if we focus on our core

metrics, without loss of generality, and for the sake of space, we can calculate

the value of RGA and of RMSE, for a continuous response, in 100 different

train/sample tests. We can then calculate the mean and standard deviation of

the values. they are reported in Table 20.

RGA mean standard deviation

0.8962 0.0167

RMSE mean standard deviation

7148.0864 693.8385

Table 20: Robustess comparison between RGA and RMSE

From Table 20 note that the RGA has a small standard deviation, about

50 times smaller than the mean. An approximate 99.7% empirical confidence

interval ranges from 0.84 to 0.94, indicating a high value of accuracy. On the

other hand, the RMSE has a higher standard deviation, about 10 times smaller

than the mean. An approximate 99.7% empirical confidence interval ranges

from 5069 to 9226, indicating a variable degree of accuracy.
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4. Concluding Remarks

The paper has presented a set of consistent statistical metrics, all rooted in

the framework of the rank graduation approach introduced by Lorenz (1905).

The implementation instructions of the proposed metrics, along with their

corresponding Python code, and all data analysed in the paper are available at:

https://github.com/GolnooshBabaei/safeaipackage. The results of the paper

are therefore fully transparent and reproducible.

The paper has illustrated how these metrics can practically assess the com-

pliance of any AI application to regulatory requirements such as Sustainability

(Robustness), Accuracy, Fairness and Explainability.

Our experimental results show that the proposed metrics work quite effec-

tively and can thus be a useful tool for the different stakeholders involved in

the assessment of compliance of AI applications, and their risks: developers,

deployers, consumers, regulators.

Further research is needed, from a methodological viewpoint, to enhance the

robustness of the proposed methodology by comparing it with alternative mod-

elisations. Further research is also needed, from an applied viewpoint, to test

the functioning of the methodology on different field domains and applications,

such as insurance, health and robotics, to name a few.

We would like to mention that what presented can be enriched by further

research developments, without altering the reference framework. For example,

different types of adversarial attacks can be considered, as different types of

perturbations; explainability of group of variables could be considered; other

ethical requirements can be included, such as human oversight and environmen-

tal sustainability.

Overall, our proposed approach to assess the compliance of AI applications

is scientifically sound and relatively simple to implement and interpret. It has

two possible limitations, which may be overcome in future research work. First,

it assumes that the response variable to be predicted is unidimensional. A

multidimensional response would require a multidimensional generalisation of
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Lorenz curves. Second, it has been applied to numerical data. Further research

should assess how the approach works for non-numerical data, such as text and

images.

We finally remark that our devised approach is based only on the comparison

of the outputs of machine learning models. It is therefore rather secure, as it

does not involve neither new data inputs nor new model elaborations.
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Appendix

With this Appendix we aim at showing how the RG· metric is calculated,

based on data reported in Tables 2, 3 and 4.

The single terms involved in formula (1) are displayed in Table 21.

By summing all the terms appearing in the third, fifth and seventh column

of Table 21 across the 10 observations, from formula (1) it results that RG· =

0.6031.

The proposed metrics can be computed based on the previous example by

replacing the terms i) y∗r∗i , ii) y
∗
r∗n+1−i

and iii) y∗r∗∗i
with:

• the response variable values ordered in a non-decreasing sense; ii) the re-

sponse variable values ordered in a non-increasing sense; iii) the response
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ID y∗
r∗
i

iy∗
r∗
i

y∗
r∗
n+1−i

iy∗
r∗
n+1−i

y∗
r∗∗
i

iy∗
r∗∗
i

1 0 0 75 75 27 27

2 3 6 48 96 12 24

3 11 33 46 138 48 144

4 12 48 34 136 34 136

5 27 135 28 140 3 15

6 28 168 27 162 11 66

7 34 238 12 84 46 322

8 46 368 11 88 0 0

9 48 432 3 27 75 675

10 75 750 0 0 28 280

Table 21: The terms of the RG· formula

variable values ordered according to the non-decreasing ranks of the pre-

dicted values (in the case of RGA);

• the predicted values, computed on non-perturbed data, ordered in a non-

decreasing sense; ii) the predicted values, computed on non-perturbed

data, ordered in a non-increasing sense; iii) the predicted values, computed

on non-perturbed data, ordered according to the non-decreasing ranks of

the predicted values computed on perturbed data (in the case of RGR);

• the predicted values, provided by the full model, ordered in a non-decreasing

sense; ii) the predicted values, provided by the full model, ordered in a

non-increasing sense; iii) the predicted values, provided by the full model,

ordered according to the non-decreasing ranks of the predicted values pro-

vided by the reduced model, i.e. without the predictor under evaluation

(in the case of RGE);

• the predicted values, provided by the full model, ordered in a non-decreasing

sense; ii) the predicted values, provided by the full model, ordered in a

non-increasing sense; iii) the predicted values, provided by the full model,

ordered according to the non-decreasing ranks of the predicted values pro-

vided by the reduced model, i.e. without the group variable under evalu-

ation (in the case of RGF).
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