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Contribution

We introduce a new measure-valued discrete-time stochastic process, well
suited for modelling persistence in spatio-temporal and functional data.

A We propose a time-varying random field model, extending the static
Poisson/gamma random field [WI98].

B We use AR(p)-type time-dependent random measures building on
scalar ARG and more generally CAR processes [GJ06].

C A Bayesian inference procedure based on Particle Gibbs posterior
approximation.

D An application to Forest Fires.

[WI98] R. L Wolpert and K. Ickstadt. Poisson/gamma random field models for
spatial statistics. Biometrika, 85(2):251–267, 1998.

[GJ06] C. Gouriéroux and J. Jasiak. Autoregressive Gamma processes.
Journal of Forecasting, 25(2):129–152, 2006.
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Motivation: Forest Fires (spatial persistence)
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Motivation: Forest Fires (local/global regimes, temporal persistence)
Jan − 2018 Feb − 2018 Mar − 2018
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(Background A) Poisson-Gamma shot-noise processes
The Poisson-Gamma shot-noise [WI98] is the following process.

Shot-noise Cox process
W ∼ GaP(H, c) Radom Measure

N|W ∼ PP(Λ) with Λ(y)dy =
(∫

Θ
kϕ(y , θ) W (dθ)

)
dy ,

kϕ is a kernel on a measurable space Y × Θ and ϕ ∈ Φ is a parameter.

W ∼ GaP(·) Λ =
∫

k dW N ∼ PP(Λ)

[WI98] R. L Wolpert and K. Ickstadt. Poisson/gamma random field models for spatial
statistics. Biometrika, 85(2):251–267, 1998.
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(Background B) Scalar ARG processes
The autoregressive Gamma (ARG) process has been studied in [Gou06].

ARG of the first order, ARG(1)

wt+1|wt ∼ NcGa(δ, βt+1wt , c−1
t+1)

An ARG(1) process (wt)t≥1 admits the state space representation

vt+1|wt ∼ Pois(βt+1wt)

wt+1|vt+1 ∼ Ga
(
δ + vt+1, c−1

t+1
)
.

Used in time series analysis (e.g. [BCCL20], [IS21] ).

[GJ06] C. Gouriéroux and J. Jasiak. Autoregressive Gamma processes.
Journal of Forecasting, 25(2):129–152, 2006.

[BCCL20] Bormetti, G., Casarin, R., Corsi, F. and Livieri, G. A stochastic volatility model
with realized measures for option pricing. J. of Bus. and Econ. Stat., 38(4), 856-871, 2020.

[IS21] Iacopini, M. and Santagiustina, C.R. (2021). Filtering the intensity of public concern
from social media count data with jumps. J. of the Royal Stat. Soc. Series A. 184: 1283-1302.
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(Background B.1) CAR process characterization

ARG are example of compound autoregressive (CAR) processes [DGJ06].

Log-Laplace is linear wrt the past wt

CAR(1)
A CAR scalar valued process (wt)t≥1 is characterized by

− log
(
E[e−λwt+1 |wt ]

)
= a(λ)wt + b(λ)

[DGJ06] S. Darolles C. Gourieroux J. Jasiak Structural Laplace Transform and Compound
Autoregressive Models. Journal of Time Series Analysis, 27(4), 477–503, 2006.
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(Background B.2) Time-varying Gamma processes

[P16] using the construction in [PCW02] introduce a measure-valued
Markov process which marginally follows a Gamma process

Goal: model dynamic random graphs à la [CF17]

⇓

We show that the family of time-dependent random measures introduced
in [P16] are the (stationary) measure valued version of the scalar valued
ARG(1) process of [GJ06].

[P16] K. Palla, F.Caron, and Y.W. Teh. Bayesian nonparametrics for sparse dynamic
networks. arXiv preprint arXiv:1607.01624, 2016.

[PCW02] M. K. Pitt, C. Chatfield, and S. G Walker. Constructing first order stationary
autoregressive models via latent processes. Scandinavian J. of Statistics, 29(4):657–663, 2002.

[CF17] Caron F, Fox EB. Sparse graphs using exchangeable random measures. Journal of
the Royal Stat. Soc., Series B. 79(5):1295–1366, 2019
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New process family
(Part A)
M-ARG (Measure-valued ARG) processes

extend [GJ06] to measure-valued processes
extend [P16] to p lags and nonstationarity

(Part B)
Shot-noise Cox processes

introduce dynamics in [WI98]

(Part C)
Compound Autoregressive CRM

extend [DGJ06] to measure-valued processes

Processes
measures: [P16] ⊂ M-ARG ⊂ CAR-CRM

⊂ ⊂

scalars: ARG [GJ06] CAR [DGJ06]
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Part A – Measure-valued Autoregressive
Gamma Processes (M-ARG)
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M-ARG(1) - Measure-valued processes

M-ARG(1) - Distributional representation
Given an initial condition W1 (random measure ), for every t ≥ 1 set

Vt+1|Wt ∼ PP(βt+1Wt),

Wt+1|Vt+1 ∼ GaP
(
H + Vt+1, c−1

t+1
)
.

We call the resulting process (Wt)t a M-ARG(1).

Wt

Vt+1

Wt+1

Vt+2

Wt+2

t = 1, . . . , T

Casarin (UCF) MARG 11 / 45



M-ARG(1) - Branching representation

The state space representation is equivalent to the branching
representation

M − ARG(1) - Branching representation

Wt+1|Vt+1
L= W (I)

t+1 + W (U)
t+1, (1)

where W (I)
t+1 is independent from W (U)

t+1 and

W (I)
t+1|Vt+1 ∼ GaP(H, c−1

t+1) W (U)
t+1|Vt+1 ∼ GaP(Vt+1, c−1

t+1).

The conditional distribution of Wt+1 given Vt+1 can be disentangled in
two parts:

1 a set of new atoms from W (I)
t+1 (immigrant),

2 a set of old atoms in W (U)
t+1 with updated weights.

Casarin (UCF) MARG 12 / 45



M-ARG(1) - Autoregressive representation
From the branching representation one gets the following equivalent
autoregressive representation of a M-ARG(1)

M − ARG(1) - Equation representation

Wt+1|Wt
L= (βt+1, ct+1) ⊙ Wt + W (I)

t+1,

where :
the innovation part is W (I)

t+1 ∼ GaP(H(·), c−1
t+1), and

the update part is expressed in term of the thinning operator

(βt+1, ct+1) ⊙ Wt =
∑
i≥1

w (U)
i ,t+1δθi,t ,

w (U)
i ,t+1 ∼ NcGa(0, βt+1wi ,t , c−1

t+1)

provided that Wt =
∑

i≥1 wi ,tδθi,t .

Casarin (UCF) MARG 13 / 45



M-ARG(1) - Noncentral Gamma representation
Given c > 0 and two base measures H and W on Θ, a random measure M
is said to be a noncentral Gamma random measure of parameters
(H, W , c−1), written M ∼ NcGaP(H, W , c−1), if its Laplace functional is

LM(f ) = exp
(

−
∫

log(1 + cf ) dH −
∫ cf

1 + cf dW
)
, f ∈ BM+(Θ).

M-ARG(1)
transition (t → t + 1):

Wt+1|Wt ∼ NcGaP(H, βt+1Wt , c−1
t+1)

conditional mean measure (t → t + 1):

E
[
Wt+1(·)|Wt

]
= ct+1

(
H(·) + βt+1Wt(·)

)
.
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M-ARG(1) - Laplace functional (h-steps ahead)

The conditional (log) Laplace functional of a M-ARG(1) process at any lag
h ≥ 1 has the appealing feature of being linear in Wt .

Proposition 1 (Laplace functional)

log(LWt+h|Wt (f )) = −
(∫

log(1 + ct+h|t f ) dH +
∫

ρt+h|t f
1 + ct+h|t f

dWt
)
,

where we defined

ρt+h|t :=
t+h∏

j=t+1
ρj , ct+h|t := ct+h +

t+h−1∑
j=t+1

cj

( t+h∏
i=j+1

ρi

)
, βt+h|t := ρt+h|tc−1

t+h|t ,

and used the convention ρt+1|1 = ρt+1 and ct+1|1 = ct+1.
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M-ARG(1) - Laplace functional (h-steps ahead)

From the the conditional (log) Laplace functional of a M-ARG(1) process
one gets the following conditional distribution

Proposition 2

One has
Wt+h|Wt ∼ NcGaP

(
H, βt+h|tWt , c−1

t+h|t
)
.

In the special case βt = β and ct = c, for all t ≥ 0,

Wt+h|Wt ∼ NcGaP
(
H, ρh−1c−1 1 − ρ

1 − ρh Wt , c−1 1 − ρ

1 − ρh

)
.

where ρ = cβ.

Casarin (UCF) MARG 16 / 45



M-ARG(1) - Stationary distribution

Proposition 3 (Stationary and limiting for Wt)

If ct = c, βt = β and ρ = βc < 1, then

Wt
L→ W∞ ∼ GaP

(
H, (1 − ρ)/c

)
if Wt ∼ GaP

(
H, (1 − ρ)/c

)
then Wt+h ∼ GaP

(
H, (1 − ρ)/c

)
, for

every h ≥ 1.

Casarin (UCF) MARG 17 / 45



M-ARG(1) - Connection with other processes

Let A be a measurable set of bounded measure, then wA
t = Wt(A) for

t ≥ 0 is a ARG(1) process with parameters (ct , βt)t and δ = H(A).

The process in [P16] depends on two positive parameters (τ, ϕ) and it
defines a M-ARG(1) for which

W0 ∼ GaP(H, τ), βt+1 = ϕ, c−1
t+1 = ϕ + τ, ∀ t ≥ 0.

In the parametrization of [P16], βt and ct do not depend on t and
βtct = ϕ/(ϕ + τ) < 1. It follows that the processes in [P16] are
always stationary M-ARG(1) processes.
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M-ARG(1) - Extension to order-p processes

Consider a vector Wt = (Wt , . . . , Wt−p+1)′ of random measures, and
assume that Wp−1 = (Wp−1, . . . , W0)′ has a given initial distribution.

M-ARG(p)
Wt ∼ M-ARG(p) on Θ if

Vt+1|Wt ∼ PP(β′
t+1Wt),

Wt+1|Vt+1 ∼ GaP
(
H + Vt+1, c−1

t+1
)
,

where βt = (β1,t , . . . , βp,t)′ ∈ Rp
+, ct > 0 and H is a boundedly finite

measure on Θ.
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M-ARG(1) - Extension to order-p processes

Similar closed-form for h-steps ahead Laplace functional.
Existence of stationary (unknown family).
In M-ARG(p) atoms can die and re-born in the same locations.
M-ARG(p) allows for different patterns of memory decay.

Casarin (UCF) MARG 20 / 45



Part B – M-ARG Shot-noise
Cox Process (SNCP)
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SNCP - Gamma Shot-noise Cox Process
The M-ARG shot-noise Cox process of order 1 is is a time-varying
shot-noise process defined, for t ≥ 0, as follows

Vt+1|Wt ∼ PP(βt+1Wt)
Wt+1|Vt+1 ∼ GaP

(
H + Vt+1, c−1

t+1
)

Nt+1|Wt+1 ∼ PP(Λt+1), Λt+1(y)dy =
∫

kϕ(y , θ) Wt+1(dθ)dy .

Allows for spatial and temporal dependence in the observable. Well suited for
spatio-temporal applications.

Vt Vt+1

Wt−1 Wt Wt+1

Nt−1 Nt Nt+1

t = 1, . . . , T
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SNCP - Shot-noise
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SNCP - Covariance, Correlation and Intensity

For dependent sequences of shot noise processes, it is usually difficult to
find tractable expressions for the intensity D(1) and the correlation
densities D

(2)
t and D

(2)
t,t+h used in spatial statistics.

See, e.g., [JGMW15] and [MW03] for further discussion. Such
expressions are available instead for our SN-M-ARG process.

[JGMW15] Abdollah Jalilian, Yongtao Guan, Jorge Mateu, and Rasmus Waagepetersen.

Multivariate product shot-noise Cox point process models. Biometrics, 71(4):1022–1033, 2015.

[MW03] Jesper Moller and Rasmus Plenge Waagepetersen. Statistical inference and
simulation for spatial point processes. CRC press, 2003.
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SNCP - Cross pair correlation
Proposition 4 (non-stationary case)
Let (Nt)t≥1 be a SN-M-ARG(1). Assume (H1)-(H3). Then, for every y, y1
and y2 in Y and for every t and h strictly positive integers

D
(1)
t (y) = κtct|1

∫
Θ

Kϕ(y , θ)H(dθ) + κtρt|1

∫
Θ

Kϕ(y , θ)W̄1(dθ),

D
(2)
t,t+h(y1, y2) =

κt+hρt+h|t

κt
D

(2)
t (y1, y2) + D

(1)
t (y1)κt+hct+h|t

∫
Θ

Kϕ(y2, θ)H(dθ)

κt
κt+h

Rt,t+h(y1, y2) = ρh
∫

Θ Kϕ(y1, θ)Kϕ(y2, θ)H(dθ)∫
Θ Kϕ(y1, θ1)H(dθ1)

∫
Θ Kϕ(y2, θ2)H(dθ2)

+ 1.

Moreover

D
(2)
t (y1, y2) = D

(1)
t (y1)D(1)

t (y2) + κ2
t c2

t|1

∫
Θ

Kϕ(y1, θ)Kϕ(y2, θ)H(dθ)

+ κ2
t ρ2

t|1Cov
( ∫

Θ
Kϕ(y1, θ)W1(dθ),

∫
Θ

Kϕ(y2, θ)W1(dθ)
)

.
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SNCP - Covariance

Proposition 5 (stationary case)
If Wt ∼ GaP(H, (1 − ρ)/c), i.e. the distribution of Wt is the stationary of
the M-ARG(1) process, then

Cov [Nt(A), Nt(B)] =
∫

Θ

∫
A∩B

kϕ(dy , θ) c
1 − ρ

H(dθ)

+
∫

Θ

∫
A

∫
B

kϕ(dy , θ)kϕ(dy ′, θ) c2

(1 − ρ)2 H(dθ)

where A, B ⊂ Y and

Cov[Nt(A), Nt+h(B)] = ρh
∫

Θ

∫
A

∫
B

kϕ(dy , θ)kϕ(dy ′, θ) c2

(1 − ρ)2 H(dθ).

Simplifies further for specific choice of kϕ(y , θ).
Expressions for the non-stationary case are also available.
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SNCP - Bayesian inference
Possible approaches (as in [WI98]):

a diffuse H;
b discrete H, that is H(dθ) =

∑n
j=1 δθj (dθ) (e.g. grid on R2).

In the first case the Inverse Lévy Measure algorithm can be extended to
our processes.
In the second case the following sampling strategy is applied.

Particle Metropolis Hastings

1 Sample Vt and Wt given
N1, . . . , Nt , for t = 1, . . . , T by
Sequential Monte Carlo (1,000
Particles).

2 Sample ψ given {Vt , Wt}t by
adaptive Metropolis Hastings
(10,000 iterations).

Vt Vt+1

Wt−1 Wt Wt+1

Nt−1 Nt Nt+1
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SNCP and Forest Fires: dataset

Data source

Satellite observations with high spatio-temporal resolution and broad
spatial coverage: the NASA’s Moderate Resolution Imaging
Spectroradiometer (MODIS)
Radiative power collected by MODIS 1-km sensor on Terra and
Aqua.2

Fire detection

Fires detection algorithms detect a fire pixel that contain actively
burning fires at the time of the satellite overpass.
Exclude active volcanoes, other land sources and offshore fires and
select only presumed vegetation fires (confidence between 80% and
100%).

2Global monthly fire location product (MCD14ML), MODIS Collection 6 NRT
Hotspot/Active Fire Detections MCD14ML. Available at https://earthdata.nasa.gov/firms.
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2Global monthly fire location product (MCD14ML), MODIS Collection 6 NRT
Hotspot/Active Fire Detections MCD14ML. Available at https://earthdata.nasa.gov/firms.
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Forest Fires – Stylized Facts
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SNCP and Forest Fires: dataset
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Figure: Fire pixels (red dots), August
2020.
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Figure: Fire pixels (red dots) with
longitude between 82oW and 34oW and
latitude between 40oS and 0o from the
1st to the 6th of August 2020.
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SNCP and Forest Fires: dataset

Abundance of remote sensed fire data calls for an effort of the science
community in investigating changes:

Detecting fire regimes.

Modelling and predicting their local or global spatio-temporal
dynamics
Measuring risk and spatial intensity of fires.

Support policy decisions in areas affected by future climatic and land-use
changes.

Casarin (UCF) MARG 31 / 45



SNCP and Forest Fires: dataset

Abundance of remote sensed fire data calls for an effort of the science
community in investigating changes:

Detecting fire regimes.
Modelling and predicting their local or global spatio-temporal
dynamics

Measuring risk and spatial intensity of fires.
Support policy decisions in areas affected by future climatic and land-use
changes.

Casarin (UCF) MARG 31 / 45



SNCP and Forest Fires: dataset

Abundance of remote sensed fire data calls for an effort of the science
community in investigating changes:

Detecting fire regimes.
Modelling and predicting their local or global spatio-temporal
dynamics
Measuring risk and spatial intensity of fires.

Support policy decisions in areas affected by future climatic and land-use
changes.

Casarin (UCF) MARG 31 / 45



SNCP and Forest Fires: dataset

Abundance of remote sensed fire data calls for an effort of the science
community in investigating changes:

Detecting fire regimes.
Modelling and predicting their local or global spatio-temporal
dynamics
Measuring risk and spatial intensity of fires.

Support policy decisions in areas affected by future climatic and land-use
changes.

Casarin (UCF) MARG 31 / 45



SNCP and Forest Fires: regimes and persistence

Global Intensity, W̄t(Θ) Global Persistence, Corr(W̄t(Θ), W̄t−1(Θ))

Intensity
Left: posterior distribution of W̄t(Θ) = 1

n
∑n

j=1 Wjt where Wjt = Wt({θj }) and n is the
number of elements of the grid.
Right: posterior distribution of Corr(W̄t(Θ), W̄t−1(Θ))
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SNCP and Forest Fires: global/local intensity
Global Intensity (red line), its 95% Credible Intervals (shaded)

and Number of Fires (black circles)

Local Intensity W19t = Wt({θ19}) Location-specific Intensity W55t = Wt({θ55})
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SNCP and Forest Fires: spatial intensity
May − 2018

Figure: Number of fires pixels (dots) with longitude between 80oW and 30oW
and latitude between 45oS and 5oS

Spatial intensity
Shaded areas: posterior mean of Λt+1(y) =

∫
Θ kϕ(y , θ) Wt+1(dθ).
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SNCP and Forest Fires: spatial intensity
Jun − 2018

Figure: Number of fires pixels (dots) with longitude between 80oW and 30oW
and latitude between 45oS and 5oS

Spatial intensity
Shaded areas: posterior mean of Λt+1(y) =

∫
Θ kϕ(y , θ) Wt+1(dθ).
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SNCP and Forest Fires: spatial intensity
Jul − 2018

Figure: Number of fires pixels (dots) with longitude between 80oW and 30oW
and latitude between 45oS and 5oS

Spatial intensity
Shaded areas: posterior mean of Λt+1(y) =

∫
Θ kϕ(y , θ) Wt+1(dθ).
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SNCP and Forest Fires: spatial intensity
Aug − 2018

Figure: Number of fires pixels (dots) with longitude between 80oW and 30oW
and latitude between 45oS and 5oS

Spatial intensity
Shaded areas: posterior mean of Λt+1(y) =

∫
Θ kϕ(y , θ) Wt+1(dθ).
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SNCP and Forest Fires: spatial intensity
Sep − 2018

Figure: Number of fires pixels (dots) with longitude between 80oW and 30oW
and latitude between 45oS and 5oS

Spatial intensity
Shaded areas: posterior mean of Λt+1(y) =

∫
Θ kϕ(y , θ) Wt+1(dθ).
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SNCP and Forest Fires: spatial intensity
Oct − 2018

Figure: Number of fires pixels (dots) with longitude between 80oW and 30oW
and latitude between 45oS and 5oS

Spatial intensity
Shaded areas: posterior mean of Λt+1(y) =

∫
Θ kϕ(y , θ) Wt+1(dθ).
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Forest Fires – Model Comparison
on a Longer Period
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SNCP and Forest Fires: Model Comparison
In our application we assumed κt = exp(η0 + ηTRt + ηS,1 sin(2πω1t) +
ηC ,1 cos(2πω1t) + . . . + ηS,4 sin(2πω4t) + ηC ,4 cos(2πω4t)). The frequencies
correspond to the peaks in the spectral density of the total number of fires:
ω̂1 = 0.086, ω̂2 = 0.168, ω̂3 = 0.254, and ω̂4 = 0.336 correspond to annual,
semi-annual, four-month and three-month periods, respectively.

July 2020 August 2020 September 2020

Figure: Number of fires (dots) and estimated expected intensity Λt (contour lines
and colors) for three months of the dry season (columns).
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SNCP and Forest Fires: Model Comparison

Figure: Global factor κt , monthly from February 2018 to September 2020.
Dashed vertical lines denote the start and end of the dry season
(August-December). Three specifications: i) ct = c (left); ii) ct ∼ IG(a, b) iid
(right); iii) ct ∼ IG(a1, b1) if t ∈ TDry , ct ∼ IG(a2, b2) if t ∈ TWet .
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SNCP and Forest Fires: Model Comparison

July 2020 August 2020 September 2020

Figure: Number of fires (dots) and Coefficient of Variation (contour lines and
colors) for three months of the dry season (columns).

Low CV values are associated with low posterior variance of Λt(y) (relevant
in assessing the uncertainty). The CV of time-varying scale models presents
higher spatial heterogeneity when compared to the constant scale models.
CV is naturally lower (dark grey indicates values below 1) in areas with more
fires, which suggests their latent random measures can better capture
variability (unobserved spatial factors).
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SNCP and Forest Fires: Model Comparison

Further results
The function Rt,t+h(x , y) > 1, at a distance of 4◦ from the centre x ,
meaning that fires are likely to occur jointly at location x .
Other areas exhibit regularity, that is, Rt,t+h(x , y) < 1 (white and
blue shades). Overall there is evidence of spatial heterogeneity and
deviation from the standard Poisson process. The local aggregation
features decrease as the horizon h increases and do not change across
dry and wet season months (e.g. November).
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